Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài thửa ruộng là x (m) ( x > 0 )
chiều rộng....................y (m) (y>0)
theo bài ra ta có hệ phương trình : \(\hept{\begin{cases}2x+2y=250\\\left(\frac{x}{3}+2y\right).2=250\end{cases}}\)
=> x = 75 , y = 50
Gọi chiều dài là a;chiều rộng là b (\(a,b\in N\)*; a<b)
Nửa chu vi thửa ruộng là:
250:2=125m
\(\Rightarrow a+b=125\left(1\right)\)
Nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng vẫn không đổi
\(\Rightarrow\left[\left(a-3\right)+\left(b+2\right)\right]\times2=\left(a+b\right)\times2\left(2\right)\)
Từ (1) và (2) ta có hệ... nhưng vô nghiệm ko bít tui sai hay đề sai :D
Gọi \(x\left(m\right)\) là chiều dài hình chữ nhật \(\left(0< x< 250\right)\)
Nửa chu vi là : \(250:2=125\left(m\right)\)
\(125-x\) là chiều rộng hình chữ nhật
Theo đề, ta có pt :
\([\left(x-3\right)+\left(125-x\right).2].2=250\)
\(\Leftrightarrow x-3+250-2x=125\)
\(\Leftrightarrow-x=-122\)
\(\Leftrightarrow x=122\left(tmdk\right)\)
Chiều dài là \(122m\)
Chiều rộng là \(125-122=3m\)
Diện tích thửa ruộng là \(122.3=366m^2\)
Giải theo tiểu học vì bài này là chương trình lớp 5.
Giảm dài 2 lần mà tăng rộng 3 lần mà chu vi không đổi có nghĩa là phần tăng và giảm là bằng nhau.
giảm dài 2 lần tức là mất đi 1/2 chiều dài. Rộng tăng 3 lần có nghĩa là chiều rộng thêm 2 lần của nó nửa. Vậy 1/2 chiều dài bằng 2 lần chiều rộng hay chiều dài bằng 4 lần chiều rộng.
Giải theo dạng tìm hai số khi biết hiệu và tỷ của nó.
Chiều rộng là: 45:(4-1)x 1= 15m và chiều dài là 15+45=60m
Diện tích: 60x15= 900m2
gọi chiều dài là a, chiều rộng là b, ta có
\(\hept{\begin{cases}\left(a+b\right)x2=300\\\left(\frac{a}{2}+3b\right)2=300\end{cases}}\)
=> \(\hept{\begin{cases}a=120\left(m\right)\\b=30\left(m\right)\end{cases}}\)
=> diện tích hình chữ nhật là: 120x30=3600(m2)
Nửa chu vi thửa ruộng : 300 : 2 = 150m
Gọi x(m) là chiều dài thửa ruộng ( 0 < x < 150 )
=> Chiều rộng thửa ruộng = 150 - x (m)
Giảm chiều dài 2 lần => Chiều dài mới = 1/2x (m)
Tăng chiều rộng 3 lần => Chiều rộng mới = 3( 150 - x ) = 450 - 3x
Khi đó chu vi thửa ruộng không đổi
=> Ta có phương trình : 1/2x + 450 - 3x = 150
<=> -5/2x = -300 <=> x = 120 (tm)
Vậy chiều dài thửa ruộng là 120m , chiều rộng thửa ruộng là 30m
Diện tích thửa ruộng = 120.30 = 3600m2
Nửa chu vi thửa ruộng : 300 : 2 = 150m
Gọi x(m) là chiều dài thửa ruộng ( 0 < x < 150 )
=> Chiều rộng thửa ruộng = 150 - x (m)
Giảm chiều dài 2 lần => Chiều dài mới = 1/2x (m)
Tăng chiều rộng 3 lần => Chiều rộng mới = 3( 150 - x ) = 450 - 3x
Khi đó chu vi thửa ruộng không đổi
=> Ta có phương trình : 1/2x + 450 - 3x = 150
<=> -5/2x = -300 <=> x = 120 (tm)
Vậy chiều dài thửa ruộng là 120m , chiều rộng thửa ruộng là 30m
Diện tích thửa ruộng = 120.30 = 3600m2
Gọi cd là a(m;a>0)
Ta có cr là a-45(m)
Theo đề: \(\dfrac{a}{2}+3\left(a-45\right)=a+a-45\Leftrightarrow a=60\)
Vậy diện tích là \(60\cdot\left(60-45\right)=900\left(m^2\right)\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}2a+2b=250\\\dfrac{1}{3}a+2b=125\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{3}a=125\\a+b=125\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=75\\b=50\end{matrix}\right.\)
Gọi chiều rộng thửa ruộng là x mét (với x>0)
Chiều dài thửa ruộng là: \(x+45\) (m)
Chu vi thửa ruộng ban đầu: \(2\left(x+x+45\right)=4x+90\)
Chiều rộng lúc sau: \(3x\)
Chiều dài lúc sau: \(\dfrac{x+45}{2}\)
Chu vi thửa ruộng lúc sau: \(2\left(3x+\dfrac{x+45}{2}\right)=7x+45\)
Do chu vi thửa ruộng ko đổi nên ta có pt:
\(4x+90=7x+45\)
\(\Rightarrow x=15\)
Chiều dài thửa ruộng ban đầu: \(15+45=60\left(m\right)\)
Diện tích: \(15.60=900\left(m^2\right)\)
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50