Cho A =\(\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+...+2013}\)
Chứng minh A < \(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2017)
A=1/2^2+1/3^2+1/4^2+...+1/1009^2
2A=2/2^2+2/3^2+2/4^2+...+2/1009^2
Ta co :(x-1)(x+1)=(x-1)x+x-1=x^2-x+x-1=x^2-1<x^2
suy ra 2A<2/(1*3)+2/(3*5)+2/(5*7)+...+2/(1008*1010)
suy ra 2A <1-1/3+1/3-1/5+1/5-1/7+...+1/1008-1/1010
suy ra 2A<1-1/1010
suy ra 2A<2009/2010<1<3/2
suy ra 2A <3/2
suy ra A <3/4 (dpcm)
nho k cho minh voi nha
\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)
Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1
= [(2015 - 1) : 2 + 1].(2015 + 1) : 2
= 1008.2016 : 2 = 1016064
Lại có : 2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng
= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)
= 2 + 2 + ... + 2 + 2 (504 số hạng 2)
= 2 x 504 = 1008
Khi đó A = \(\frac{1016064}{1008}=1008\)
b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)
Khi đó : B/100 = 1/2
=> B = 50
Vậy B = 50
Bài mình làm đơn giản thôi bạn nhé!
\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+7}+...+\frac{1}{1+3+5+..2017}\)
Ta có: \(\frac{1}{1+3}< \frac{3}{4}\)
\(\frac{1}{1+3+5}< \frac{3}{4}\)
\(\frac{1}{1+3+5+7}< \frac{3}{4}\)
. . . . . . . .
\(\frac{1}{1+3+5+...+2017}< \frac{3}{4}\)
____________________________________________________
\(A< \frac{3}{4}-\frac{1}{1+3+5+...+2017}\)
\(\Rightarrow A< \frac{3}{4}^{\left(đpcm\right)}\)
thằng tth quá ngu. làm vậy là sai bét.
hình như CTV mày câu và spam câu trả lời à
\(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}+\frac{1}{5^{2014}}\)
\(5M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
\(\Rightarrow4M=1-\frac{1}{5^{2014}}< 1\)
\(\Rightarrow M< \frac{1}{4}< \frac{1}{3}\)
9999932015= 9999934.503+3= 9999934.503.9999933= (.....1).(.....7) = (....7)
5555572013= 5555574.503.555557 = (.....1).(.....7) = (.....7)
Suy ra 9999932015- 5555572013= (....7) - (....7) = (....0) chia hết cho 5
Diện tích toàn phần của khối nhựa hình lập phương là:
10 x 10 x 6 = 600 (cm2)
Cạnh khối gỗ hình lập phương là:
10 : 2 = 5 (cm)
Diện tích toàn phần của khối gỗ hình lập phương là:
5 x 5 x 6 = 150 (cm2)
Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:
600 : 150 = 4 (lần)