K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2023

\(\dfrac{x+3}{x-3}-\dfrac{x}{x+3}=\dfrac{2x^2+9}{x^2-9}\left(x\ne-3;x\ne3\right)\\ < =>\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2x^2+9}{\left(x-3\right)\left(x+3\right)}\)

suy ra

`x^2 +6x+9-x^2 +3x=2x^2 +9`

`<=> 2x^2 - x^2 +x^2 - 6x -3x +9 -9=0`

`<=> 2x^2 -9x=0`

`<=> x(2x-9)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-9=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0

13 tháng 7 2017

Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)

\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)

ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)

\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)

\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)

Thỏa mãn ĐK

Các trường hợp khác làm tương tự

29 tháng 4 2018

\(ĐKXĐ:\)\(x\ne\pm3\)

      \(\frac{x}{x+3}-\frac{x-2}{2x-6}=\frac{x+2}{x^2-9}\)

\(\Leftrightarrow\)\(\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}-\frac{\left(x-2\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{2\left(x+2\right)}{2\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\)\(2x\left(x-3\right)-\left(x-2\right)\left(x+3\right)=2\left(x+2\right)\)

\(\Leftrightarrow\)\(2x^2-6x-x^2-x+6=2x+4\)

\(\Leftrightarrow\)\(x^2-9x+2=0\)

p/s:  mk lm đc có đến đấy thôi, bn tham khảo nhé, lm đc thì gửi cho mk nhé

29 tháng 4 2018

mk cũng lm dk đến đấy m về sau chịu 

8 tháng 5 2017

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

8 tháng 5 2017

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

AH
Akai Haruma
Giáo viên
6 tháng 7

PT không có dấu bằng thì không gọi là PT. Bạn xem lại nhé.

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

22 tháng 5 2021

\(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)

\(< =>\frac{\left(x-3\right).4}{20}-\frac{\left(2x-1\right).2}{20}=\frac{\left(x+1\right).10}{20}+\frac{5}{20}\)

\(< =>4x-12-4x+2=10x+10+5\)

\(< =>10x=-10-10-5=-25\)

\(< =>x=-\frac{25}{10}=-\frac{5}{2}\)

22 tháng 5 2021

\(\frac{x+3}{2}-\frac{2x-1}{3}-1=\frac{x+5}{5}\)

\(< =>\frac{\left(x+3\right).15}{30}-\frac{\left(2x-1\right).10}{30}-\frac{30}{30}=\frac{\left(x+5\right).5}{30}\)\(< =>15x+45-20x+10-30=5x+25\)

\(< =>-5x+25=5x+25< =>10x=0< =>x=0\)