cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện P(x)=Q(x)+Q(1-x) với mọi x thuộc R
biết rằng các hệ số của đa thức P(x) là các số nguyên không âm và P(x)=0.tính P(P(3))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(P\left(x\right)=Q\left(x\right)+Q\left(1-x\right)\)
+)\(x=0\) \(\implies\) \(P\left(0\right)=Q\left(0\right)+Q\left(1\right)=0\)
+)\(x=1\) \(\implies\) \(P\left(1\right)=Q\left(1\right)+Q\left(0\right)\)
\(\implies\) \(P\left(0\right)=P\left(1\right)=0\)
Đặt đa thức : P(x) = an . \(x^n\) + an - 1 . \(x^{n-1}\) + ...... + a1 . \(x^1\) + a0
P(x) là đa thức bậc n ; có các hệ số là : an ; an - 1; .... ; a1 ; a0
P(1) = an + an - 1 + ......... + a1 + a0 = 0
Mà a0 ; a1 ; ..... ; an - 1 ; an \(\geq\) 0
\(\implies\) an + an - 1 + ... + a1 + a0 \(\geq\) 0
\(\implies\) P(x) \(\geq\) 0
Dấu " = " xảy ra \(\iff\) a0 = a1 = ..... = an - 1 = an = 0
\(\implies\) P(x) = 0 với mọi x \(\in\) R
\(\implies\) P(7) = 0
\(\implies\) P(P(7)) = P(0) = 0
Vậy P(P(7)) = 0
P(x) = (x - a) (x- a - 2015). g(x) => P(x) chẵn với mọi x
Q(x) = (x - 2014) h(x) + 2016 -> Q(P(x)) = (P(x) - 2014 ).H(P(x)) + 2016 chia hết cho 2 nên Q(P(x) = 1 sẽ không thể có nghiêm nguyên
Thấy Q(2) = 14
=> am.xm+am-1.xm-1.......a1x.a0= 14( am,am-1,...,a1,a0 thuộc N, a0 khác 0)
=> am.2m+am-1.2m-1.......a12.a0= 14
Thấy : 2m,2m-1,...,2 là số chẵn
=> am,2m,...,a12 là số chẵn
=> a0 là số chẵn
* Nếu a lẻ
=> a + 83 chẵn
cmtt, có P(a + 83 là số chẵn )
* Nếu a chẵn
=> ....(cmtt)
=> P(a) chẵn
=> P(x) chẵn với mọi X thuộc N
=> Q(p(x)) chẵn và = 2014
:PPPPPPPPPPP
P(x)=0
=>P(3)=0
=>P((3))=0
Với x = 0, ta có (0) = Q(0) + Q(1). (/)
Với x = 1, ta có (1) = Q(1) + Q(0). (**)
Từ (*) và (**) ta có: P(0) = P(1)
Giả sử P(x) = anx2 + an - 1xn - 1 + ... + a1x1 + ao (a1 là các số nguyên không âm; i = 1 -> n)
Vì P(1) = 0 nên: an + an - 1 + ... + a1 + ao = 0
Mà: an; an - 1; ... ; a1; ao là các số nguyên không âm nên an = an - 1 = .... = a1 = ao = 0
=> (x) = 0 => P(P(3))=0.