Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Vẽ tiếp tuyến AM và cát tuyến ACD. Gọi I là trung điểm của CD. Đường tròn đường kính OA cắt (O) tại N.
a) Chứng minh tứ giác AMOI nội tiếp được một đường tròn. Xác định tâm K của đường tròn ngoại tiếp đó
b) Vẽ dây CB vuông góc với MO cắt MN tại F. Chứng minh rằng tứ giác CFIN là tứ giác nội tiếp
a: ΔACD cân tại A
mà AI là trung tuyến
nên AI vuông góc CD
góc AIO=góc AMO=90 độ
=>AMIO nội tiếp
Tâm K là trung điểm của OA