\(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{x-2\sqrt{x}}\right)\left(\frac{1}{\sqrt{x}+2}+\frac{4}{x-4}\right)\)
(x>0, x#4)
a) Rút gọn R
b) Tính giá trị của R khi x=4+\(2\sqrt{3}\)
c)Tìm giá trị của x để R>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\right):\frac{x\sqrt{x}}{\left(4-x\right)^2}\)
\(=\frac{2x+18\sqrt{x}-x-9\sqrt{x}}{x-9}\cdot\frac{\left(4-x\right)^2}{x\sqrt{x}}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+9\right)\left(4-x\right)^2}{x\sqrt{x}\left(x-9\right)}\)
\(=\frac{\left(\sqrt{x}+9\right)\left(4-x\right)^2}{\sqrt{x}\left(x-9\right)}\)
B= \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{x-2\sqrt{2}}\right):\left(\frac{1}{\sqrt{x}+2}+\frac{4}{x-4}\right)\)
= \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
= \(\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\):\(\frac{1}{\sqrt{x}-2}\)
=\(\frac{\sqrt{x}+2}{\sqrt{x}}.\sqrt{x}-2\)
Nhớ tick cho mk nhé
=\(\frac{x-4}{\sqrt{x}}\)
a.
\(A=\left[\frac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}\right]:\left[\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)
\(=\frac{-4\sqrt{x}.\sqrt{x}}{-\sqrt{x}+3}=\frac{4x}{\sqrt{x}-3}\)
b.
\(A=-1\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)
\(\Leftrightarrow4x=-\sqrt{x}+3\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(A=-1\Leftrightarrow x=\frac{3}{4}\)
a) R=\(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(R=\left(\frac{\sqrt{x}\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(R=\left(\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(R=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{1}{\sqrt{x}-2}\right)\)
\(R=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{1}{\sqrt{x}-2}\right)\)
\(R=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c
\(\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)
\(co:x>o\inĐKXĐ\leftrightarrow\sqrt{x}>0\leftrightarrow\sqrt{x}+2>0\)với mọi x thuộc ĐKXĐ
\(\rightarrow\)Tử thức luôn dương với mọi x thuộc ĐKXĐ
Xét mẫu thức ta có :
\(\sqrt{x}-2>0\) (vì \(\sqrt{x}>0\) với mọi x thuộc ĐKXĐ)
\(\leftrightarrow\sqrt{x}=2\)\(\leftrightarrow x>4\)(tm đkxđ)
Vậy..............