Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AQ của (O).
a) Chứng minh: tứ giác AEHF là tứ giác nội tiếp.
b) Chứng minh: AB.QC = AQ.BD
c) Gọi I là trung điểm BC. Chứng minh AH=2OI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK=AD*2R
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
b; góc ACK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc CDH+góc CEH=90+90=180 độ
=>CDHE nội tiếp
b: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có
góc BEF=góc DEH
góc BFE=góc DHE
=>ΔBFE đồng dạng với ΔDHE
a: Sửa đề: BFEC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
góc BAK=góc BAD+góc DAK
góc DAC=góc DAK+góc CAK
mà góc BAD=góc CAK
nên góc BAK=góc DAC
Xét ΔABK vuông tại B và ΔADC vuông tại D có
góc BAK=góc DAC
=>ΔABK đồng dạng với ΔADC
a) Dễ thấy A, H, K thẳng hàng.
Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).
Suy ra tứ giác ACKB nội tiếp.
b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)
\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)
c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.
d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm)
a: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc IBF=góc IEC
Xét ΔIBF và ΔIEC có
góc IBF=góc IEC
góc I chung
=>ΔIBF đồng dạng với ΔIEC
=>IB/IE=IF/IC
=>IB*IC=IE*IF