K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

A B C M N P I H O

a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600

=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).

b) Tam giác BPM là tam giác đều (cmt) => PM=BP

Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)

=> BP=AN.

Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA

Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP 

=> Tam giác OAN= Tam giác OBP (đpcm)

c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP

Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)

HP=HN => H nằm trên trung trực của NP (2)

Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).

23 tháng 4 2018

Kurokawa Neko cho mk hỏi tc đoạn chắn là kí gì zậy

11 tháng 10 2023

loading...  loading...  loading...  loading...  

a: ME//AB

=>góc CEM=góc CAB=60 độ

=>góc CEM=góc C

Xét tứ giác MECD có

MD//EC

góc MEC=góc DCE

=>MECD là hình thang cân

=>góc EMD=180-60=120 độ

MF//BC

=>góc AFM=góc ABC=60 độ

Xét tứ giác AFME có

ME//AF

góc MFA=góc EAF

=>AFME là hình thang cân

=>góc FME=180-60=120 độ

MD//AC

=>góc MDB=góc ACB=60 độ

=>góc MDB=góc B

Xét tứ giác BFMD có

FM//BD

góc B=góc MDB

=>BFMD là hình thang cân

=>góc FMD=180-60=120 độ

=>góc FME=góc FMD=góc DME

b: AEMF là hình thang cân

=>AM=EF

BFMD là hình thang cân

=>BM=FD

MECD là hình thang cân

=>MC=ED

=>MA,MB,MC lần lượt là độ dài 3 cạnh của ΔDEF

=>Trong 3 đoạn MA,MB,MC, đoạn lớn nhất nhỏ hơn tổng 2 đoạn còn lại

19 tháng 8 2023

a) Để chứng minh gốc EMD = DMF = EMF, ta sẽ sử dụng quan sát về tỷ lệ các đoạn thẳng song song trong tam giác, cụ thể là định lý Thales. Theo định lý Thales, khi có hai đường thẳng song song cắt các đường thẳng chéo khác, các đoạn thẳng chéo tương ứng cắt bởi hai đường thẳng song song này có tỷ lệ đồng nhất. Áp dụng định lý Thales, ta chứng minh: - Ta có đường thẳng song song qua M và song song AC cắt BC tại D, suy ra MD // AC. - Ta cũng có đường thẳng song song qua M và song song với AB cắt AC tại E, suy ra ME // AB. Từ đây, ta có thể suy ra góc tức thời EMD = DMF = 180° - góc MEF (do cặp góc đối nhau). Tiếp theo, ta cần chứng minh góc MEF = góc EMF. - Ta biết rằng EM // AB (vì đường thẳng EM song song với AB). - Vì tam giác ABC đều nên mọi cặp góc tại đỉnh của tam giác đều bằng nhau. Do đó, góc AEC = góc ACE. - Từ hai đường thẳng song song EM và AB và hai cặp góc bằng nhau AEC = ACE, ta suy ra hai góc AME = CMB. - Ngược góc AMF = CMB (vì AM // BC) nên suy ra AME = AMF. Kết hợp với công thức trên, ta có: góc MEF = góc EMF. Từ cả hai phần trên, ta kết luận được đặt ở góc độ EMD = DMF = EMF. b) Để chứng minh rằng trong 3 đoạn MA, MB, MC, đoạn lớn nhất nhỏ hơn tổng hai đoạn kia, ta có thể áp dụng quy tắc tam giác: - Giả sử MA > MB và MA > MC. - Ta cần chứng minh MA < MB + MC. - Ta có thể viết MA = MB + x và MA = MC + y, trong đó x và y là độ dài của hai đoạn thẳng MB và MC so với đoạn MA. - Từ giả thuyết, x > 0 và y > 0. - Khi đó, MB = MA – x và MC = MA – y. - Đặt nay xem xét tổng MB + MC = (MA – x) + (MA – y) = 2MA – (x + y). - Vì x > 0 và y > 0 nên x + y > 0. - Như vậy, tổng MB + MC < 2MA, suy ra MA < MB + MC. - Do đó, trong 3 đoạn MA, MB, MC, đoạn lớn nhất nhỏ hơn tổng hai đoạn kia. Do đó, ta đã chứng minh được cả hai phần a và b.

22 tháng 2 2018

hình như đề bài sai rồi

15 tháng 6 2018

a, Xét ∆ ABC đều

➡️Góc A = góc B = góc C = 60°

Vì MN // AB (gt)

➡️Góc ABC = góc NMC = 60°

Xét ∆ MNC có 2 góc bằng 60°

➡️∆ MNC đều

C/m tương tự ta sẽ có ∆ BMP đều

b, ✳️ Ta có: MN // AB

                MP // AC

➡️AN = MP (t/c cặp đoạn chắn)

mà MP = BP (∆ BMP đều)

➡️AN = BP

T/c cặp đoạn chắn: hai đoạn thẳng song song bị chắn bởi hai đoạn thẳng song song thì bằng nhau.

✳️ Vì ∆ ABC đều

➡️O là trọng tâm đồng thời là tâm đg tròn ngoại tiếp

➡️OA = OB

O cx đồng thời là tâm đg tròn nội tiếp

➡️AO là tia phân giác của góc BAC

➡️Góc BAO = góc OAN (1)

✳️ Xét ∆ ABO có OA = OB (cmt)

➡️∆ ABO cân tại O

➡️Góc ABO = góc BAO (2)

Từ (1) và (2) ➡️góc ABO = góc OAN

✳️ Xét ∆ AON và ∆ BOP có:

AN = BP (cmt)

Góc OAN = góc ABO (cmt)

OA = OB (cmt) 

➡️∆ AON = ∆ BOP (c.g.c)

c, Vì ∆ AON = ∆ BOP (cmt)

➡️ON = OP (2 cạnh t/ư)

➡️OI là đg trung trực của PN (đpcm)

Mk trình bày đầy đủ rồi đó bn chỉ cần viết vào vở thôi mk nha hok tốt~

15 tháng 6 2018

Cảm ơn bạn nhiều nha!!!

27 tháng 12 2021

giải giúp mik vs