Cho x, y là 2 số thực dương thỏa mãn
(x+y)2+7(x+y)+y2+10=0
Tìm GTNN của biểu thức A=x+y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1+5\left(x+y+1\right)+y^2+4=0\)
\(\Leftrightarrow\left(x+y+1\right)^2+5\left(x+y+1\right)+y^2+4=0\)
Đặt t = x+y+1
Suy ra \(t^2+5t+y^2+4=0\)
Xét \(\Delta=25-4\left(4+y^2\right)=9-4y^2\) . Để pt có nghiệm thì \(\Delta\ge0\Rightarrow y^2\le\frac{9}{4}\)
Giả sử pt có hai nghiệm : t1 < t2 . Do đó GTNN của A xảy ra tại t1
Khi đó : \(t_1=\frac{-5-\sqrt{9-4y^2}}{2}\ge\frac{-5-\sqrt{9}}{2}=-4\)
Suy ra \(A\ge-4\) . Vậy Min A = -4 <=> y = 0 => x = -5
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)
\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)
Bạn tham khảo:
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24
Từ giả thiết ta có:
\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+2\left(x+y\right).\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+10=-y^2\le10\)
Mà \(\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\le0\)
\(\Rightarrow\left(x+y+\frac{7}{2}\right)^2\le\frac{9}{4}\)
Giải ra ta được \(x+y+1\ge-4\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)
Vậy \(A_{MIN}=-4\) tại \(\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)
bạn giải cái bất phương trình sai rồi: Min phải bằng -1, đề kêu 2 số thực x;y dương nên ko có chuyện x= -5 đâu