Cho tam giác ABC có góc A=60 độ, AB<AC. Kẻ BH vuông góc với AC (H thuộc AC). AD là tia phân giác của góc A. BI vuông góc với AD tại I. BI cắt AC tại E. Chứng minh DC>DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN
nên G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm chung của BE và CF
=>BCEF là hình bình hành
=>BC=EF
b: Xét ΔFAE và ΔBGC có
FA=BG
AE=GC
FE=BC
=>ΔFAE=ΔBGC
a: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AB chung
AD=AC
Do đó: ΔABD=ΔABC
b: Ta có: ΔABD=ΔABC
nên BD=BC
hay ΔBDC cân tại B
\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)
Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)
Xét t/giác ABC và t/giác DEF
có: AB = DE (gt)
AC = DF (gt)
\(\widehat{A}=\widehat{D}=50^0\)
=> t/giác ABC = t/giác DEF (c.g.c)
a: Xét ΔIBA vuông tại I và ΔABD vuông tại A có
góc IBA chung
=>ΔIBA đồng dạng với ΔABD
b: Xét ΔBAD vuông tại A và ΔBHE vuông tại H có
góc ABD=góc HBE
=>ΔBAD đồng dạng với ΔBHE
=>BA/BH=BD/BE
=>BA*BE=BH*BD
d: góc BIA=góc BHA=90 độ
=>BHIA nội tiếp
góc IAH=góc IBH
góc IHA=góc ABI
mà góc IBH=góc ABI
nên góc IAH=góc IHA
=>IA=IH
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)