cho tứ giác ABCD. Qua điểm E trên cạnh AD kẻ đường thẳng song song vs DC cắt AC ỡ G, qua G kẻ đường thẳng song song vs BC cắt AB tại H
a) chứng minh HE // BD
b) AE * BH // AH * DE
ace trong làng dúp, gải hộ mk mai mk phải nộp bài r !!!! ^_^ :P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ADC: EG // DC (gt).
=> \(\dfrac{AE}{AD}=\dfrac{AG}{AB}\) (Định lý Talet). (1)
Xét tam giác ACB: HG // CB (gt).
=> \(\dfrac{AG}{AC}=\dfrac{AH}{AB}\) (Định lý Talet). (2)
Từ (1) và (2) => \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(=\dfrac{AG}{AC}\right).\)
Xét tam giác ADB: \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(cmt\right).\)
=> HE // BD (Định lý Talet đảo).
Xét tg ABC có
EF//AC (gt) (1)
EA=EB (gt)
=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC
\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)
Xét tg BCD chứng minh tương tự ta cũng có GC=GD
Xét tg ADC có
GF//AC (gt) (3)
GC=GD (cmt)
=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC
\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)
Từ (1) và (3) => EF//GH (cùng // với AC)
Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)
=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Gọi O là giao của AC và BD
Ta có
FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)
Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)
\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)
Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau
Vì EG//DC=> AE/AD=AG/AC(Ta-lét)
Vì GH//BC=> AG/AC=AH/AB(Ta-lét)
=> AE/AD=AH/AB=> HE//BD (Ta-lét đào)
Phần b của bạn hình như sai đề
mk ms sửa đề lại, bn giải hộ mk