K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2023

a) Để phân số 2n+1/ n(n+1) là phân số tối giản thì tử và mẫu phải là các số nguyên tố cùng nhau.

Ta có thể phân tích 2n+1 thành (2n+1) = 2n + 1

Vậy phân số trên có thể đưa về dạng:

2n + 1
n(n+1)

ƯCLN(n, n+1) = 1 vì n và n+1 là 2 số liên tiếp.

Do đó, n(n+1) là số nguyên tố cùng nhau với 2n+1 khi và chỉ khi 2n+1 không chia hết cho n và n+1.

Điều này có nghĩa là 2n+1 phải là số lẻ (vì n và n+1 luôn có một số chẵn).

b) Giá trị nhỏ nhất của n để phân số trên là phân số tối giản sẽ xảy ra khi 2n+1 và n(n+1) là 2 số nguyên tố cùng nhau và 2n+1 là số lẻ nhỏ nhất.

Vậy để 2n+1 là số lẻ nhỏ nhất, n phải là số chẵn nhỏ nhất.

Do đó, ta lần lượt thử giá trị của n và tìm số lẻ nhỏ nhất làm cho phân số trên là phân số tối giản:

Khi n = 2:

2n + 1 = 5 và n(n+1) = 6

GCD(5,6) = 1.

Vậy n = 2 làm cho phân số trên là phân số tối giản.

Vậy giá trị nhỏ nhất của n là 2.

18 tháng 8 2021

ban hoc lop may vay

29 tháng 7 2020

a,                    \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)

\(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)

để B tối giản thì 7 phải chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(7)

=> 2n - 3 = { 1 , -1 , 7 , -7 }

=> 2n = { 4 , 2 , 10 , -4 }

=> n ={ 2 , 1 ,5 ,-2 }

Đừng bỏ cuộc

29 tháng 7 2020

b, để \(\frac{4n+1}{2n-3}\) lớn nhất 

=> 2n - 3 phải nhỏ nhất

mà 2n - 3 phải >0 và khác 0 ( là mẫu số )

=> 2n -3 = 1

=> 2n = 4

n = 2

2 tháng 4 2016

c)

goi D LA U (6N+7;2N+1)

  1. =>6N+7 5CHIAHET CHO D

=>2N+1 CHIA HET CHO D

=>1(6N+7) CHIA HET CHO D

=>3(2N+6) CHIA HETS CHO D

=>[6N+7)-(6N+6)] CHIA HET CHO D

=>D CHIA HET CHO D

=>D=1

=>6N+7/2N+1 LA P/S TOI GIAN

8 tháng 5 2021
A. B C Nhé chứ ko liền nhau
2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)