Rut gon \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)
\(B=\frac{1}{20}\)
B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
=\(\frac{1.2.3...19}{2.3.4...20}=\frac{1}{20}\)
\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=\frac{1}{2}x^2.6x+\frac{1}{2}x^2.\left(-3\right)+\left(-x\right).x^2+\left(-x\right).\frac{1}{2}+\frac{1}{2}.x+\frac{1}{2}.4\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=\left(3x^3-x^3\right)-\frac{3}{2}x^2+\left(-\frac{1}{2}x+\frac{1}{2}x\right)+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(a,\)\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(b,\)\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)
\(=6x^4-2x^2-4x^3+4x^4-4x^2+x^2-3x^3\)
\(=10x^4-7x^3-5x^2\)
ĐKXĐ : x khác -1 và 1
A = [x^3+1-(x^2-1).(x+1)/(x-1).(x+1)] : [x.(x-1)+x/x-1]
= [-x^2+x/(x-1).(x+1)] : x^2/x-1
= -x.(x-1)/(x-1).(x+1) . (x-1)/x^2
= -(x-1)/x.(x+1)
k mk nha
=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
Ta có \(P=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(a+2\sqrt{a}+1\right).\left(a-2\sqrt{a}+1\right)\right]\)
\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}.\frac{1}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}}{1+a}\)