Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại I
Xét ΔOHA vuông tại H và ΔOIC vuông tại I có
\(\widehat{HOA}\) chung
Do đó: ΔOHA~ΔOIC
=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)
=>\(OH\cdot OC=OA\cdot OI\)
mà \(OA\cdot OI=OM^2=OB^2\)
nên \(OB^2=OH\cdot OC\)
=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
Xét ΔOBC và ΔOHB có
\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
\(\widehat{BOC}\) chung
Do đó: ΔOBC~ΔOHB
=>\(\widehat{OBC}=\widehat{OHB}\)
mà \(\widehat{OHB}=90^0\)
nên \(\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
mà OA⋅OI=OM2=OB2
nên OB2=OH⋅OC
đoạn này không hiểu ạ , góc B đã vuông đâu
Câu c) Điều cần CM tương đương \(\frac{MC}{MA}=\frac{MA}{MD}\)
Tức là cần CM \(MC.MD=MA^2\)
Ta đã có \(MC.MD=MO^2\) và \(MO=MA\) do tam giác \(AMO\)cân (bạn thử chứng minh 2 góc đáy bằng nhau ấy)
Xét (O) có
OC là bán kính
FC\(\perp\)CO tại C
Do đó: FC là tiếp tuyến của (O)
Xét (O) có
FC,FA là các tiếp tuyến
Do đó: FC=FA và OF là phân giác của góc AOC
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB và OM là phân giác của góc AOB
Ta có: OF là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{AOF}\)
Ta có: OM là phân giác của góc AOB
=>\(\widehat{AOB}=2\cdot\widehat{AOM}\)
Ta có: \(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{AOF}+\widehat{AOM}\right)=180^0\)
=>\(2\cdot\widehat{FOM}=180^0\)
=>\(\widehat{FOM}=90^0\)
Xét ΔFOM vuông tại O có OA là đường cao
nên \(AF\cdot AM=OA^2\)
mà AF=CF và BM=MA
nên \(CF\cdot MB=OA^2=R^2\)
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: góc OAM+góc OBM=90+90=180 độ
=>AOBM nội tiếp
b: góc BOM=1/2*góc AOB=góc BCA
a giải thích em làm sao 1/2 AOB = góc BCA được ạ