Bài 5. Cho ∆ABC nhọn (AB <AC) nội tiếp (O), hai đường cao BE và CF cắt nhau tại H. Tia AH cắt BC tại D.
a)Chứng minh : các tứ giác BCEF, AEHF nội tiếp.
b)Vẽ đường kính AK của (O).Gọi M là trung điểm BC. Chứng minh : H và K đối xứng nhau qua M.
Giup minh voi a! Minh cam onn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét \(\left(O\right)\) có
\(\widehat{BDC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BDC}=90^0\)
Xét \(\left(O\right)\) có
\(\widehat{BEC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BEC}=90^0\)
b: Xét ΔABC có
BE là đường cao ứng với cạnh huyền AC
CD là đường cao ứng với cạnh huyền AB
BE cắt CD tại K
Do đó: AK\(\perp\)BC
4:
Trong một tam giác vuông thì hai góc nhọn có tổng số đo là 90 độ
mà hai góc nhọn đó bằng nhau
nên số đo của mỗi góc nhọn là: \(\dfrac{90}{2}=45^0\)
5:
Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=18\\b-c=18\\a+b+c=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+18\\c=b-18\\a+b+c=180\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=b+18\\c=b-18\\b+18+b+b-18=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=60\\a=78\\c=42\end{matrix}\right.\)
=>\(\widehat{A}=78^0;\widehat{B}=60^0;\widehat{C}=42^0\)
a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có
góc HAF chung
=>ΔAHF đồng dạng vơi ΔABD
=>AH/AB=AF/AD
=>AH/AF=AB/AD
b: Xét ΔAHB và ΔAFD có
AH/AF=AB/AD
góc HAB chung
=>ΔAHB đồng dạng với ΔAFD
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Đọc tiếpĐúng 0Bình luận (2) vũ tiến đạt12 tháng 11 2017 lúc 12:52
ta có hình vẽ
a) Do P là trung điểm của DE (gt), Q là trung điểm của BE (gt) nên PQ là đường trung bình của tam giác BED, suy ra PQ=1/2BD.
Chứng minh tương tự MN =1/2 BD, NP = 1/2CE và MQ = 1/2CE.
Mặt khác BD = CE (gt)
Do đó MN = NP = PQ = QM
Vậy tứ giác MNPQ là hình thoi.
b) Do PN // AC, PQ // AB nên (hai góc có cạnh tướng ứng song song).
Gọi giao điểm của MP với AB là R, ta có ...
a) Xét tam giác ABC và tam giác AEF có:
AB = AE (gt).
AC = AF (gt).
^BAC = ^EAF (2 góc đối đỉnh).
=> Tam giác ABC = Tam giác AEF (c - g - c).
b) Tam giác ABC = Tam giác AEF (cmt).
=> ^ABC = ^AEF (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
=> BC // EF (dhnb).
Chúc bạn học tốt!
a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
góc AEH+góc AFH=180 dộ
=>AEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
=>BHCK là hình bình hành
=>H đối xứng K qua M