BÀI 1 : CHO PHÂN THỨC : \(\frac{2X^4-4X+8}{X^3+8}\)
a, với đk nào của x thi giá trị của phân thức đc xđ
b, rút gọn pt
c, tính gtri của phân thức khi x= 2
d, tính gia trị của x để gtri phân thức = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ne-2\)
b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)
\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\dfrac{2}{x+2}\)
c) Vì x=2 thỏa mãn ĐKXĐ
nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:
\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)
d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1
hay x=-1(nhận)
Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1
a) Ta thấy :x\(^3\)+8=x^3+2^3=(x+2).(x^2-2x+4)
ĐKXD là : (x+2).(x^2-2x+4) # 0 (# là khác )
Ta có :x^2-2x+4=(x^2-2x+1)+3=(x-1)^2+3>3 với mọi x\(\in\) R
Vậy ĐKXD là :x+2\(\ne\)0 => x\(\ne\)-2
b)\(\frac{2x^2-4x+8}{x^3+8}\)=\(\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2+4\right)}\)=\(\frac{2}{x+2}\)
c) x=2 (t/m điều kiện ) thay x=2 vào biếu thức trên ta đc :
\(\frac{2}{x+2}\)=\(\frac{2}{4}\)=\(\frac{1}{2}\)
Vậy khi x=2 thì gtrij của biếu thức =\(\frac{1}{2}\)
d) Để phân thức =2 thì \(\frac{2}{x+2}\)=2 <=> \(\frac{2}{x+2}\)=\(\frac{2\left(x+2\right)}{x+2}\)
<=> 2=2x+4
<=> -2=2x <=> x=-1 (t/m điều kiện )
Vậy để phân thức =2 thì x=-1
a. ĐKXĐ: \(x^3+8\ne0\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)\ne0\Leftrightarrow x+2\ne0\Leftrightarrow x\ne-2\)
b. \(\frac{2x^2-4x+8}{x^3+8}=\frac{2.\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
c. Tại x = 2, phân thức có giá trị:
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
d. Để p.thức có giá trị bằng 2 thì:
\(\frac{2}{x+2}=2\Leftrightarrow x+2=1\Leftrightarrow x=-1\)
Vậy để p thức có giá trị bằng 2 thì x = -1.
a, \(ĐKXĐ:x^3+8\ne0\Leftrightarrow x\ne-2\)
b, \(C=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
c, \(\left|2x+1\right|=3\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-2\left(ktm\right)\end{cases}\Rightarrow x=1}\)
thay vào ta được : \(C=\frac{2}{1+2}=\frac{2}{3}\)
\(\frac{x}{x+2}=2\Leftrightarrow x=2x+4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
a) \(\frac{2x^2-4x+8}{x^3+8}\Rightarrow\) ĐKXĐ: \(x^3+8\ne0 \Leftrightarrow x^3\ne-8 \Leftrightarrow x\ne-2 \)
b) \(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
c) \(\frac{2}{x+2}\Rightarrow f\left(2\right)=\frac{2}{2+2}=\frac{1}{2}\)
d) \(\frac{2}{x+2}=2\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)
uum, mik nghĩ phần C chỗ x+2=1 thì phải gt tại sao x+2=1 thì đúng hơn
1.Cho \(\frac{x^2-4x+4}{x^2-4}< 2\)
<=>\(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}< 2\)
<=>\(\frac{x-2}{x+2}< 2\)
<=>\(\frac{x-2}{x+2}-2< 0\)
<=>\(\frac{x-2}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)
<=>\(\frac{x-2-2\left(x+2\right)}{x+2}< 0\)
<=>\(\frac{x-2-2x-4}{x+2}< 0\)
<=>\(\frac{-x-6}{x+2}< 0\)
<=>\(\orbr{\begin{cases}\hept{\begin{cases}-x-6< 0\\x+2>0\end{cases}}\\\hept{\begin{cases}-x-6>0\\x+2< 0\end{cases}}\end{cases}}\)
<=>\(\orbr{\begin{cases}\hept{\begin{cases}x< -6\\x< -2\end{cases}}\\\hept{\begin{cases}x>-6\\x>-2\end{cases}}\end{cases}}\)
<=>\(\orbr{\begin{cases}x< -2\\x>-6\end{cases}}\)
Vậy -6 < x < -2
1) \(\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
\(\frac{x-2}{x+2}< 2\)
\(\Leftrightarrow\frac{x-2}{x+2}-2< 0\)
\(\Leftrightarrow\frac{x-2}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)
\(\Leftrightarrow\frac{x-2-2x-4}{x+2}< 0\)
\(\Leftrightarrow\frac{-x-6}{x+2}< 0\)
\(\Leftrightarrow-x-6< 0\)
\(\Leftrightarrow-x< 6\)
\(\Leftrightarrow x>-6\)
vậy \(x>-6\)thì giá trị của phân thức \(>2\)
2) \(\frac{2x^2-4x+8}{x^3+8}\)
\(=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\frac{2}{x+2}\)\(\left(x\ne-2\right)\)
khi đó \(\frac{2}{x+2}>2\)
\(\Leftrightarrow\frac{2}{x+2}-2>0\)
\(\Leftrightarrow\frac{2}{x+2}-\frac{2\left(x+2\right)}{x+2}>0\)
\(\Leftrightarrow\frac{2-2x-4}{x+2}>0\)
\(\Leftrightarrow\frac{-2x-2}{x+2}>0\)
\(\Leftrightarrow-2x-2>0\)
\(\Leftrightarrow-2x>2\)
\(\Leftrightarrow x< -1\)
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2+1}{2-1}=3\)
d: Để A=2 thì x+1=2x-2
=>-x=-3
hay x=3(nhận)
đề bài có sai ko zậy
k sai đâu bn