Cho tam giác ABC cân tại A ( góc A bé hơn 90 độ ) . Kẻ đường trung tuyến AI a, Chứng minh △ ABI = △ ACI
b, Chứng minh Ai là đường cao của tam giác ABC c, Gọi G là trọng tâm của ABC . Biết Ai = 12cm . Tính Gi d, Gọi D là trung điểm của AC . Chứng minh BC bé hơn 3/4 BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
=>ΔABI=ΔACI
b: Xet ΔABC có
I là trung điểm của CB
IN//AB
=>N là trung điểm của AC
a: Xét ΔABI và ΔACI có
AB=AC
góc BAI=góc CAI
AI chung
=>ΔABI=ΔACI
b: ΔACB cân tại A
mà AI là phân giác
nên AI vuông góc BC
c: Xét ΔBAC có
AI,CM là các đườg trung tuyến
AI căt CM tại G
=>G là trọng tâm
=>BG là đường trung tuyến của ΔABC
a)
Xét \(\Delta ABI\)và \(\Delta ACI\)có:
AI : cạnh chung (giả thiết)
BI=CI (giả thiết)
AB=AC (giả thiết)
Do đó \(\Delta ABI=\Delta ACI\left(c.c.c\right)\)
b)
AI là trung tuyến theo đề bài
c)
G là trọng tâm của tam giác ABC nên \(AG=\frac{2}{3}AI=\frac{2}{3}.9=6\left(cm\right)\)
d)
\(\Delta ABI=\Delta ACI\left(c.c.c\right)\Rightarrow\widehat{AIB}=\widehat{AIC}=180^0:2=90^0\)
Vì AI và BD đều là đường cao của \(\Delta ABC\)cắt nhau tại H nên H là trực tâm của \(\Delta ABC\)
\(\Rightarrow CH\)vuông góc với \(AB\)
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
IB=IC
=>ΔABI=ΔACI
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI là trung trực của BC
c: Xét tứ giác ABDC có
I là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB//DC
a, Xét ΔAIB và ΔAIC có:
AB=AC (ΔABC cân tại A)
Chung AI
IB=IC (gt)
⇒ΔAIB = ΔAIC (c.c.c)
b, Xét ΔIHB và ΔIKC có:
\(\widehat{IHB}=\widehat{IHC}\left(=90^o\right)\)
IB=IC(gt)
\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A))
\(\Rightarrow\)ΔIHB = ΔIKC (ch-gn)
\(\Rightarrow IH=IK\)(2 cạnh tương ứng)
a: XétΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC
AI chung
=>ΔAIB=ΔAIC
b: Xét ΔCIE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCIE cân tại C
a: Xet ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc BC
c: GI=1/3*AI=4cm