Cho a,b,c là các số nguyên thỏa mãn:
( a - b)( b - c)( c - a) = a + b + c
CMR: a + b + c chia hết cho 27.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau:
TH1: a, b, c có các số dư khác nhau khi chia cho 3
Suy ra a+b+c chia hết cho 3 trong khi đó (a-b)(b-c)(c-a) không chia hết cho 3 (do cả 3 số ta đã giả sừ không có 2 số nào có cùng số dư)
TH2: a, b, c đều có cùng số dư khi chia 3 suy ra mọi việc xong vì khi đó (a-b)(b-c)(c-a) chia hết cho 27 suy ra a+b+c chia hết cho 27 (dpcm).
Th3: a, b, c chì tồn tại duy nhất 1 cặp có cùng số dư chia cô 3 (vì nếu tồn tại 2 cặp thì 3 số sẽ cùng số dư quay về TH2)
(1) Suy ra a+b+c không chia hết cho 3 suy ra vô lý vì (a-b)(b-c)(c-a) có một số chia hết cho 3
(do (1)) Tóm lại chì có TH2 được nhận hay a+b+c chia hết cho 27
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)