cho hình thang ABCD (Ab//CD) có góc DAB và AD=3cm AB = 5cm BC= 4cm
a. chứng minh tam giác DAB đồng dạng với tam giác CBD
c. tính diện tích hình thang ABCD, biết dtich tam giác ABC bằng 5 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔBCD có
\(\widehat{BAD}=\widehat{DBC}\)
\(\widehat{ABD}=\widehat{BDC}\)
Do đó: ΔADB\(\sim\)ΔBCD
b: Ta có: ΔADB\(\sim\)ΔBCD
nên DB/CD=AB/BD=AD/BC
=>5/CD=3/5=3,5/BC
=>CD=25/3(cm); BC=35/6(cm)
a. Ta thấy góc DAB = góc DBC (gt) và góc ABD = góc BDC (So le trong) nên \(\Delta DAB\sim\Delta CBD\left(g-g\right)\)
b. Ta có: \(\frac{DA}{BC}=\frac{AB}{BD}\Rightarrow\frac{3}{4}=\frac{5}{BD}\Rightarrow BD=\frac{20}{3}\)
\(\frac{AB}{BC}=\frac{BD}{DC}\Rightarrow DC=\frac{4.20}{3}:3=\frac{80}{9}\)
c. Ta thấy \(\frac{S_{ABD}}{S_{BDC}}=\left(\frac{3}{4}\right)^2=\frac{9}{16}\Rightarrow\frac{S_{ABD}}{S_{ABCD}}=\frac{9}{25}\Rightarrow S_{ABCD}=\frac{125}{9}\left(cm^2\right)\)
Chúc em học tốt :)
https://olm.vn/hoi-dap/detail/52703554140.html
Xem tại link này(Mik gửi cho)
Học tốt!!!!!!!!!!!!
a, Xét tam giác ADB và tam giác BCD có
^DAB = ^CBD ; ^ABD = ^CDB ( soletrong)
Vậy tam giác ADB ~ tam giác BCD (g.g)
b, \(\dfrac{AD}{BC}=\dfrac{AB}{BD}\Rightarrow BC=\dfrac{AD.BD}{AB}=\dfrac{7}{10}cm\)
\(\dfrac{DB}{CD}=\dfrac{AB}{BD}\Rightarrow CD=\dfrac{BD^2}{AB}=1cm\)
c, Ta có \(\dfrac{S_{ADB}}{S_{BCD}}=\left(\dfrac{AD}{BC}\right)^2=25\)
a) Xét 2 tam giác ADB và BCD có: góc DAB = góc DBC (gt) góc ABD = góc BDC ( so le trong ) nên tam giác ADB đồng dạng với tam giác BDC.(1) b) Từ (1) ta được AB/BC = DB/CD = AB/BD hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5 ==> BC= 3,5*5/2,5 = 7 (cm) ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5 ==> CD = 5*5/2,5 =10 (cm) c) Từ (1) ta được; AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 . ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2 mà tỉ số diện tích bằng bình phương tỉ số động dạng do đó S ADB/ S BCD = (1/2)^2 = 1/4