K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2023

 Thật may câu này tương tự câu cuối trong đề thi HSG 9 tỉnh mình năm 2021-2022 nên biết làm :)) (bài lúc đó y chang thế này chỉ khác là số 2021 với 2022)

 Trước tiên ta sẽ chứng minh \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\). Thật vậy, ta có:

 \(VP=P\left(x\right)P\left(x+1\right)\) 

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=\left(x^2+mx+n\right)\left(x^2+2x+1+mx+m+n\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x^2+mx+n\right)+2x+m+1\right]\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+x^2+mx+n\)

\(=\left[\left(x^2+mx+n\right)+x\right]^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left[P\left(x\right)+x\right]^2+m\left[P\left(x\right)+x\right]+n\)

\(=P\left(P\left(x\right)+x\right)=VT\) 

Vậy đẳng thức được chứng minh. 

Từ \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\), chọn \(x=2023\), ta được:

\(P\left(P\left(2023\right)+2023\right)=P\left(2023\right)P\left(2024\right)\)

\(\Rightarrow Q\left(x\right)\) có nghiệm nguyên là \(x=P\left(2023\right)+2023\) (đpcm)

 

DD
19 tháng 6 2021

Giả sử \(f\left(x\right)\)có nghiệm nguyên là \(a\).

Khi đó \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)(với \(g\left(x\right)\)là đa thức với các hệ số nguyên) 

\(f\left(1\right)=\left(1-a\right)g\left(1\right)\)là số lẻ nên \(1-a\)là số lẻ suy ra \(a\)chẵn. 

\(f\left(2\right)=\left(2-a\right)g\left(2\right)\)là số lẻ nên \(2-a\)là số lẻ suy ra \(a\)lẻ. 

Mâu thuẫn. 

Do đó \(f\left(x\right)\)không có nghiệm nguyên. 

19 tháng 6 2021

mn help plssss