Tìm x
a) (x + 1) phần 2009 + (x + 2) phần 2008 + (x + 3 )phần 2007 = -3
b) (x + 1) phần 2009 + (x + 2) phần 2008 = (x + 10) phần 2000 + (x + 11) phần 1999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là cuộc thi nhé. cần sự công bằng. Mong em không tái phạm lần sau. Bạn sẽ bị khóa nick hoặc trừ 5000 điểm nhé!
BQT thân gửi em!
__BQT Lớp 6/7 Hỏi Đáp__
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.(x+1)}=\frac{2007}{2009}\)
=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2019}\)
Vì 1 = 1
=> x + 1 = 2019
=> x = 2019 - 1
=> x = 2018
\(\frac{x+10}{2008}+\frac{x+9}{2009}=\frac{x+8}{2010}+\frac{x+7}{2011}\)
\(\left(\frac{x+10}{2008}+1\right)+\left(\frac{x+9}{2009}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)
\(\frac{x+2018}{2008}+\frac{x+2018}{2009}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)
\(\frac{x+2018}{2008}+\frac{x+2018}{2009}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)
\(x+2018\cdot\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
mà \(\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)\ne0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
Vậy,.............
Ta có: \(\frac{x+10}{2008}+\frac{x+9}{2009}=\frac{x+8}{2010}+\frac{x+7}{2011}\)
\(\Rightarrow\frac{x+10}{2008}+1+\frac{x+9}{2009}+1=\frac{x+8}{2010}+1+\frac{x+7}{2011}+1\)
\(\Rightarrow\frac{x+2018}{2008}+\frac{x+2018}{2009}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)
\(\Rightarrow\frac{x+2018}{2008}+\frac{x+2018}{2009}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)
\(\Rightarrow x+2018\cdot\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
Do \(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\ne0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
Vậy \(x=-2018\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)
\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)
\(\Rightarrow x=-2010\)
Bài giải
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Vì \(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)
\(x=0-2010=-2010\)
\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)
\(\Rightarrow\left(\dfrac{x+1}{2009}+1\right)+\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)=\left(\dfrac{x+10}{2000}+1\right)+\left(\dfrac{x+11}{1999}+1\right)+\left(\dfrac{x+12}{1998}+1\right)\)
\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}=\dfrac{x+2010}{2000}+\dfrac{x+2010}{1999}+\dfrac{x+2010}{1998}\)\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)\(\Rightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)=0\)\(\Rightarrow x+2010=0\Rightarrow x=-2010\)
đã hơn 3 năm rồi nhưng chưa có ai giải, mà 3 năm rồi bn cx ko cần nx.
b, \(\frac{x+1}{2009}+\frac{x+2}{2009}=\frac{x+10}{2000}+\frac{x+11}{1999}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)\)
\(\Rightarrow\frac{x+1+2009}{2009}+\frac{x+2+2008}{2008}=\frac{x+10+2000}{2000}+\frac{x+11+1999}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2000}+\frac{x+2010}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2000}-\frac{x+2010}{1999}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\right)=0\)
Mà \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\ne0\)
=> x + 2010 = 0 => x = -2010
ai la Fc cua lam chan khang kb duoc khong?