Cho \
M=1/10+1/15+1/21+1/28+...1/105+1/120
Chứng tỏ rằng 1/3<M<1/2
Gợi ý nha: M=2x[1/4x5+1/5x6+1/6x7+...1/15x16]
giúp mình nha!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
\(M=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{105}+\frac{1}{120}\)
\(M=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{210}+\frac{2}{240}\)
\(M=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{14.15}+\frac{2}{15.16}\)
\(M=\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+\frac{2}{6}-\frac{2}{7}+\frac{2}{7}-\frac{2}{8}+...+\frac{2}{15}-\frac{2}{16}\)
\(M=\frac{2}{4}-\frac{2}{16}=\frac{3}{8}\)
Vì \(\frac{3}{9}< \frac{3}{8}< \frac{4}{8}\)nên \(\frac{1}{3}< M< \frac{1}{2}\)
Vậy \(\frac{1}{3}< M< \frac{1}{2}\)
P/S : Đừng nói như lần trước nhé!
M=1/10 + 1/15 + 1/21 +....+ 1/120
M=2/20 +2/30+2/42+....+2/240
M=2/4.5 + 2/5.6 + 2/6.7 +.....+ 2/15.16
M=2.(1/4.5 +......+ 1/15.16)
M=2.(1/4 -1/5 +1/5 - 1/6 +.....+ 1/15 - 1/16)
M=2.(1/4 - 1/16)
M=2.(4/16 - 1/16)
M=2. 3/16
M=6/16=3/8
Có 1/3 = 8/24 < 9/24 = 3/8 =>1/3<M
Có 1/2 = 4/8>3/8 =>1/2 >M
=> 1/3 < M < 1/2
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)