K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

1) Xét (o) có :

Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)

Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)

xét tứ giác ABOC có:

góc OBA+góc OCA =180 (cmt)

=> tứ giác ABOC là tứ giác nt (dhnb)

Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90

MI vuông góc với AB (theo đề bài )=>góc BIM = 90

Xét tứ giác BIMH có:

góc BHM+BIM=180 (cmt)

=>tứ giác BIMH là tứ giác  nt

2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :

MH^2=MI . MK

3)

CM góc thì mình không biết đâu nhé!

5 tháng 6 2021

a)Vì `MI bot BC`

`=>hat{MIC}=90^o`

`HM bot HC`

`=>hat{MHC}=90^o`

`=>hat{MHC}+hat{MIC}=180^o`

`=>` tg HMIC nt

 

5 tháng 6 2021

b)Vì HMIC nt

`=>hat{HCM}=hat{MIH}`

Mà `hat{HCM}=hat{MBC}`(góc nt và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung  MC nhỏ)

`=>hat{MIH}=hat{MCB}`

Đoạn còn lại thì mình không biết điểm F ở đâu ker

27 tháng 3 2018

Gọi H là hình chiếu của O trên BC. 

ta có OH = const (BC cố định)
a.
{MI  ⊥ABMK  ⊥AC{MI  ⊥ABMK  ⊥AC


→{AIM^=90oAKM^=90o→{AIM^=90oAKM^=90o

→→ tứ giác AIMK nt đtròn đkính AM.
b.
Ta có:
MKC^+MPC^=180oMKC^+MPC^=180o

→→ Tứ giác MPCK nt đtròn đkính MC

→MPK^=MCK^  (1)→MPK^=MCK^  (1) (góc nt cùng chắn MK⌢MK⌢ )

Xét (O;R), ta có:

MBC^=MCK^  (2)MBC^=MCK^  (2) (góc nt và góc tt với dây cung cùng chắn MC⌢MC⌢ )

K/h (1),(2) : MPK^=MBC^  (3)MPK^=MBC^  (3)

c. lần lượt CM:

MPK^=MIP^  (4)MPK^=MIP^  (4)

MPI^=MKP^MPI^=MKP^

→ΔMIP∼ΔMPK→ΔMIP∼ΔMPK

Tỉ số đồng dạng :

MIMP=MPMKMIMP=MPMK

→MP2=MI.MK→MP2=MI.MK

→MP3=MI.MK.MP→MP3=MI.MK.MP

MI.MK.MPMax↔MPMaxMI.MK.MPMax↔MPMax

Ta có: MP+OH≤RMP+OH≤R

→MP≤R−OH→MP≤R−OH

→MPMax→MPMax bằng R-OH. Khi O,H,M thẳng hàng

Vậy MI.MK.MPMax=(R−OH)3MI.MK.MPMax=(R−OH)3 khi O,H,M thẳng hàng

8 tháng 3 2022
Gọi H là hình chiếu của O trên BC. ta có OH = const (BC cố định)a.{MI ⊥ABMK ⊥AC{MI ⊥ABMK ⊥AC→{AIM^=90oAKM^=90o→{AIM^=90oAKM^=90o→→ tứ giác AIMK nt đtròn đkính AM.b.Ta có:MKC^+MPC^=180oMKC^+MPC^=180o→→ Tứ giác MPCK nt đtròn đkính MC→MPK^=MCK^ (1)→MPK^=MCK^ (1) (góc nt cùng chắn MK⌢MK⌢ )Xét (O;R), ta có:MBC^=MCK^ (2)MBC^=MCK^ (2) (góc nt và góc tt với dây cung cùng chắn MC⌢MC⌢ )K/h (1),(2) : MPK^=MBC^ (3)MPK^=MBC^ (3)c. lần lượt CM:MPK^=MIP^ (4)MPK^=MIP^ (4)MPI^=MKP^MPI^=MKP^→ΔMIP∼ΔMPK→ΔMIP∼ΔMPKTỉ số đồng dạng :MIMP=MPMKMIMP=MPMK→MP2=MI.MK→MP2=MI.MK→MP3=MI.MK.MP→MP3=MI.MK.MPMI.MK.MPMax↔MPMaxMI.MK.MPMax↔MPMaxTa có: MP+OH≤RMP+OH≤R→MP≤R−OH→MP≤R−OH→MPMax→MPMax bằng R-OH. Khi O,H,M thẳng hàngVậy MI.MK.MPMax=(R−OH)3MI.MK.MPMax=(R−OH)3 khi O,H,M thẳng hàng

a: Sửa đề: MK\(\perp\)AB

Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)

nên BIMK là tứ giác nội tiếp

=>B,I,M,K cùng thuộc một đường tròn

b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)

nên IMHC là tứ giác nội tiếp

=>\(\widehat{MHI}=\widehat{MCI}\)(1)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)

Xét (O) có

\(\widehat{MCB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM

Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)

Ta có: IMHC là tứ giác nội tiếp

=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM

Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)

Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)

Xét ΔMIH và ΔMKI có

\(\widehat{MIH}=\widehat{MKI}\)

\(\widehat{MHI}=\widehat{MIK}\)

Do đó: ΔMIH~ΔMKI

=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)

=>\(MI^2=MH\cdot MK\)

30 tháng 6 2021

tứ giác AIMK có

góc AIM = góc AKM = 90 độ

suy ra AIMK là tứ giác nội tiếp