K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

tk ủng hộ mk nha mọi người

16 tháng 4 2017

Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)   (ĐPCM)

13 tháng 9 2017

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)

=> S = P => (S - P)2013 = 0

13 tháng 9 2017

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)

\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)\(=P\)

\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

Tík cho mik nha!

16 tháng 2 2016

KHÓ QUÁ MÀ

ĐÂU AI LÀM RA ĐƯỢC

16 tháng 2 2016

._. bài toán này mình tưởng nhiều ng` giỏi giải đc

27 tháng 3 2018

\(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(P=\left(1+\frac{1}{3}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-1-\frac{1}{2}-...-\frac{1}{1006}\)

\(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)  (1)

\(Q=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)  (2)

\(\left(1\right)\left(2\right)\Rightarrow\frac{P}{Q}=\frac{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}=1\)

24 tháng 6 2016

Ta có: \(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+4}{2011}+\frac{x+5}{2010}+\frac{x+6}{2009}\)

\(\Rightarrow\frac{x+1}{2014}+1+\frac{x+2}{2013}+1+\frac{x+3}{2012}+1=\frac{x+4}{2011}+1+\frac{x+5}{2010}+1+\frac{x+6}{2009}+1\)

\(\Rightarrow\frac{2015+x}{2014}+\frac{2015+x}{2013}+\frac{2015+x}{2012}=\frac{2015+x}{2011}+\frac{2015+x}{2010}+\frac{2015+x}{2009}\)

\(\Rightarrow\left(2015+x\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)

=> 2015 + x = 0

=> x = -2015

25 tháng 6 2016

Các bạn check lại ở dáp án của Ngọc Vĩ nhé!

7 tháng 4 2018

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(=\left(1+\frac{1}{3}+......+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+........+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+......+\frac{1}{2013}\)

\(=P\)

\(\Leftrightarrow S-P=0\)

\(\Leftrightarrow\left(S-P\right)^{2013}=0\)

20 tháng 3 2020

Cho mình hỏi sao lại trừ 2 lần (1/2 - 1/4 ....) thế ạ

19 tháng 5 2016

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1006}\right)\)

\(S=\frac{1}{1007}+\frac{1}{1008}+.....+\frac{1}{2012}+\frac{1}{2013}=P\)

=>S-P=0

=>(S-P)2016=0

23 tháng 2 2017

Sai rồi. Sai đề bài banhquaoeoho

22 tháng 2 2018

Hình như đề sai rồi bạn ơi, ra số xấu lắm

22 tháng 2 2018

đúng đề bài 100% luôn