K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có

AM chung

\(\widehat{PAM}=\widehat{QAM}\)

Do đó: ΔPAM=ΔQAM

=>PA=QA và MP=MQ

b: AP=AQ

=>A nằm trên đường trung trực của PQ(1)

MP=MQ

=>M nằm trên đường trung trực của PQ(2)

Từ (1) và (2) suy ra AM là đường trung trực của PQ

=>AM\(\perp\)PQ

10 tháng 6 2015

A) MP vuông góc AB tại P => góc MPA=90; MQ vuông góc AC tại Q=> MQA=90

=> tg APMQ nội tiếp(tổng 2 góc đối =90)

b) diện tích tam giác AMB=1/2.MP.AB=1/2.MP.BC; diện tích tam giác AMC=1/2.MQ.AC=1/2.MP.BC( AB=BC=CA tam giác đều)

S tam giác ABC=1/2.AH.BC

ta có: S AMB+S AMC=S ABC  <=> \(\frac{1}{2}.MP.BC+\frac{1}{2}MQ.BC=\frac{1}{2}AH.BC\Leftrightarrow\frac{1}{2}BC\left(MP+MQ\right)=\frac{1}{2}.BC.AH\)

=> MP+MQ=AH

c) góc AHM=90(AH là đường cao)=> H cũng thuộc đường tròn đường kính AM <=> ngũ giác APMQH nội tiếp

(O): góc HAQ=1/2 góc HOQ(góc nt và góc ở tâm)

tam giác AHC vuông => góc HAC=90-C=90-60=30 độ hay HAQ=30(góc C=60 vì tam giác đều)

=> góc HOQ=2.30=60 . 

(O): góc PAQ=1/2 góc POQ(góc nt và góc ở tâm) <=> góc POQ=2.60=120( góc PAQ hay BAC=60- tam giác đều)

góc HOQ=60 => OH là pg của góc POQ.

tam giác POQ có: OP=OQ=R=> tam giác cân => OH đồng thời là đường cao => OH vuông góc PQ

10 tháng 6 2020

câu a , tổng hai góc đối là 180 độ nhé bạn