Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF và H là trực tâm. Chứng minh rằng:
a) tam giác AFE và tam giác ABC đồng dạng.
b) AD.HD=DB.DC
c) AH.HD=BH.HE=CH.HF
d) HD/AD + HE/BE + HF/CF =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
Xet ΔAEF và ΔABC có
góc AFE=góc ACB
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
b:
Sửa đề: DA*HD=DB*DC
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
góc DBH=góc DAC
=>ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>DB*DC=DA*DH
1: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
2: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
=>AF/AD=AH/AB
=>AF*AB=AD*AH
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF=AH*AD
Xét ∆AHE và ∆BHD, ta có
<D=<E=90°
<BHD=<EHA ( đối đỉnh)
⟹ ∆AHE ∼∆BHD(g.g)
⟹HA/HB=HE/HD⟹ HA*HD=HB*HE
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiêp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có
góc DAB=góc DCH
=>ΔDAB đồng dạng vơi ΔDCH
=>DA/DC=DB/DH
=>DA*DH=DB*DC
c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có
góc DHC=góc FHA
=>ΔHDC đồng dạng vơi ΔHFA
=>HD/HF=HC/HA
=>HF*HC=HD*HA
Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HD*HA