Tìm a,b để đa thức P(x)=x^3+ax^2+bx+4 chia hết cho đa thức Q(x)=(x-2)(x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
Ta có (x3 + ax2 + bx + 3) : (x2 - 2x - 1) = x + a - 2 dư x(b - 2a + 5) + a + 1
Để (x3 + ax2 + bx + 3) \(⋮\) (x2 - 2x - 1)
=> x(b - 2a + 5) + a + 1 = 0 \(\forall x\)
=> \(\hept{\begin{cases}b-2a+5=0\\a+1=0\end{cases}}\Rightarrow\hept{\begin{cases}b-2a=-5\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}b=-7\\a=-1\end{cases}}\)
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
\(\dfrac{G\left(x\right)}{P\left(x\right)}\)
\(=\dfrac{x^6-1+ax^2+bx+3}{x^2-x+1}\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)+\dfrac{ax^2-ax+a+\left(b+a\right)x+3-a}{x^2-x+1}\)
\(=A+\dfrac{\left(b+a\right)x+3-a}{x^2-x+1}\)
G(x) chia hêt cho P(x)=0
=>3-a=0 và a+b=0
=>a=3 và b=-3
Gọi H(x) là thương trong phép chia G(x) cho P(x)
Ta có : G(x) bậc 6, P(x) bậc 2 => H(x) bậc 4
=> H(x) có dạng x4 + mx3 + nx2 + px + 2 ( hệ số mình chọn là 2 chắc bạn biết )
Khi đó G(x) chia hết cho P(x) <=> G(x) = H(x).P(x)
<=> x6 + ax2 + bx + 2 = ( x2 - x + 1 )( x4 + mx3 + nx2 + px + 2 )
<=> x6 + ax2 + bx + 2 = x6 + mx5 + nx4 + px3 + 2x2 - x5 - mx4 - nx3 - px2 - 2x + x4 + mx3 + nx2 + px + 2
<=> x6 + ax2 + bx + 2 = x6 + ( m - 1 )x5 + ( n - m + 1 )x4 + ( p - n + m )x3 + ( 2 - p + n )x2 + ( -2 + p )x + 2
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}m-1=0\\n-m+1=0\\p-n+m=0\end{cases}}\); \(\hept{\begin{cases}2-p+n=a\\-2+p=b\end{cases}}\)
=> \(\hept{\begin{cases}m=1\\n=0\\p=-1\end{cases}}\); \(\hept{\begin{cases}a=3\\b=-3\end{cases}}\)
Vậy a = 3 ; b = -3
P(x) chia hết cho Q(x) = (x - 2)(x + 1)
=> x = 2 và x = -1 là nghiệm của PT P(x) = 0
=>
8 + 4a + 2b + 4 = 0
-1 + a - b + 4 = 0
<=>
4a + 2b = -4
a - b = -3
<=>
a = -5/3
b = 4/3
P(x) chia hết cho Q(x) = (x - 2)(x + 1)
=> x = 2 và x = -1 là nghiệm của PT P(x) = 0
=>
8 + 4a + 2b + 4 = 0
-1 + a - b + 4 = 0
<=>
4a + 2b = -12
a - b = -3
<=>
a = -3
b = 0
Bài trước mình chuyển sai chỗ 4a + 2b = -4