Cho(C):x²+y²-4x+6y-12=0 và đường tròn (d): x+y+4=0. Viết phương trình đường thẳng (∆) song song (d) và cách đường tròn (C) theo một dây cung có độ dài bằng 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
- Đường thẳng d’ song song với d nên có dạng: 3x+ y+ m= 0
- IH là khoảng cách từ I đến d’:
- Xét tam giác vuông IHB:
Đáp án B
Đường tròn (C) có tâm I( 1; -3) và R= 2
có phương trình 4x- 3y+ m= 0.
Vẽ
Vậy:
Đáp án C
Đường tròn (C) có tâm I( -1 ; 3) và bán kính R= 2
Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.
Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).
Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0
=> c = 15
Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.
F(x,y)=x^2+y^2+4x-6y+5
F(3;2)=9+14-12-12+5=-6<0
=>A nằm trong (C)
Dây cung MN ngắn nhất
=>IH lớn nhất
=>H trùng với A
=>MN có VTPT là (1;-1)
Phương trình MN là:
1(x-3)-1(y-2)=0
=>x-y-1=0
Đáp án: B
(C): x 2 + y 2 - 2x + 6y + 8 = 0
⇔ (x - 1 ) 2 + (y + 3 ) 2 = 2 có I(1;-3), R = 2
Gọi d’ là tiếp tuyến của đường tròn (C) và song song với d
Vì d'//d ⇒ d': x + y + c = 0, (c ≠ 4)
d’ là tiếp tuyến của (C) nên d(I;d') = R
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
gọi M,N là hai điểm cắt đg tròn tâm I
kẻ IH vuông góc với MN ,theo đề bài ta có MN =6 => MH=3
độ dài từ tâm I đến (d) =\(\dfrac{\left|2.3-5.-1+18\right|}{\sqrt{2^2+\left(-5\right)^2}}=\sqrt{29}\)
Áp dụng pytago vào tam giác vuông IMH ta có
\(IM=\sqrt{IH^2+MH^2}=\sqrt{38}\)
vậy pt đg tròn là \(\left(x-3\right)^2+\left(y+1\right)^2=\left(\sqrt{38}\right)^2\)( tới đây bạn tự khai triển ra nha
b ) cách làm tương tự
2 .
MN max khi nó là đường kính > nó phải đi qua điểm I
\(\overrightarrow{uIA}=\left(4;-2\right)=>n\overrightarrow{IA}=\left(2;4\right)\)
ptđt \(\Delta:2\left(x-3\right)+4\left(y-0\right)=0\)
MN min
ta có MN=2HM
trg tam giác vuông IHMtheo pytago ta có \(HM=\sqrt{IA^2-IH^2}\)có IA là bán kính ( cố định ) => IH max thì MN min
lại xét tam giác IHP trong tam giác IHP thì có IP là cạch huyền mà trg tam giác cạc huyền là cạch lớn nhất nên IH max khi điểm H trùng với điểm P .
vậy toạ độ A trùng với P nên \(u\overrightarrow{IP}=\left(4;-2\right)=n\overrightarrow{\Delta}\)
ptđt là \(4\left(x-3\right)-2\left(y-0\right)=0\)
mình trình bày hơi tệ bạn thông cảm nha !
(C): x^2+y^2-4x+6y-12=0
=>O(2;-3)
R=căn 2^2+(-3)^2+12=5
Gọi đường cần tìm là (d'): x+y+c=0
Gọi A,B lần lượt là giao điểm của (d') và (C)
ΔOHB vuông tại H
\(d\left(O;AB\right)=\dfrac{\left|2+\left(-3\right)+c\right|}{\sqrt{2}}=HO\)
\(=\sqrt{OB^2-BH^2}=3\)
=>\(\left[{}\begin{matrix}c=3\sqrt{2}+1\\c=-3\sqrt{2}+1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x+y-3\sqrt{2}+1=0\\x+y+3\sqrt{2}+1=0\end{matrix}\right.\)