Bài 20 (trang 110 SGK Toán 9 Tập 1)
Cho đường tròn tâm $O$ bán kính 6cm và một điểm $A$ cách $O$ là 10cm. Kẻ tiếp tuyến $AB$ với đường tròn ($B$ là tiếp điểm). Tính độ dài $AB$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng định lý Py-ta-go tính:
Tam giác OAB vuông tại B nên:
AB2 = OA2 – OB2 = 102 -62 =64
⇒ AB = 8
được AB=8cm.
Bài 2:
Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
a: Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
a: ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của \(\widehat{AOB}\)
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
b: Gọi giao điểm của AB với OC là H
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=12(cm)
ΔAHO vuông tại H
=>\(HA^2+HO^2=AO^2\)
=>\(HO^2=15^2-12^2=81\)
=>HO=9(cm)
Xét ΔOAC vuông tại A có AH là đường cao
nên OH*OC=OA^2
=>OC=15^2/9=25(cm)
Vì AB là tiếp tuyến (O;OB)
=> OB vuông AB
hay tam giác ABO vuông tại B
Xét tam giác OBA vuông tại B, đường cao BH
* Áp dụng hệ thức : \(OB^2=OH.OA\Rightarrow OH=\dfrac{OB^2}{OA}=\dfrac{18}{5}\)cm
\(=\sqrt{64}=8\left(cm\right)\)
Áp dụng định lý Pytago vào tam giác AOB vuông tại B, ta có:
AB=\(\sqrt{AO^2-OB^2}=\sqrt{10^2-6^2}\)\(=\sqrt{64}=8\left(cm\right)\)
AB=8