K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để phương trình có hai nghiệm phân biệt thì -8m+24>0

=>m<3

x1+x2=2x1x2

=>2(2m-2)=4

=>2m-2=2

=>2m=4

=>m=2(nhận)

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

6 tháng 5 2022

Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11

a) Ta có:

△' = b'- ac = ( m + 3 )2 - 1 . ( 2m - 11 ) 

m2 - 6m + 9 - 2m + 11

△' = b'- ac = 

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(\Leftrightarrow4^2-2\left(m-1\right)=30\)

\(\Leftrightarrow2m-2=-14\)

\(\Leftrightarrow m=-6\)

5 tháng 4 2023

5x1+x2 thỏa mãn gì bạn nhỉ? Bạn bổ sung thêm đề nhé

5 tháng 4 2023

5x1+x2=0 bạn ạ 

23 tháng 3 2022

a)thay m=1 vào pt ta có 

\(x^2+4x=0\)

<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) thay x=2 vào pt ta có: 13+m=0

<=>m=-13

thay m=-13 vào pt ta có

\(x^2+4x-12=0\)

<=>(x-2)(x+6)=0

<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)

vậy với m=-13 thì nghiệm còn lại là x=-6

c) để pt có 2 nghiệm pb thì \(\Delta>0\)

<=>16-4m-4>0

<=>3-m>0

<=>m<3

áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)

theo đề bài ta có \(x_1^2+x_2^2=10\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>16-2m-2=10

<=>2-m=0

<=>m=2(nhận)

vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.

 

 

a=1; b=-4; c=-m^2+3

Δ=(-4)^2-4*1*(-m^2+3)

=16+4m^2-12=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

5x1+x2=0 và x1+x2=4

=>4x1=-4 và x1+x2=4

=>x1=-1 và x2=5

x1x2=-m^2+3

=>-m^2+3=-5

=>m^2-3=5

=>m^2=8

=>\(m=\pm2\sqrt{2}\)

13 tháng 4 2022

undefined

14 tháng 4 2022

Do phương trình có 2 nghiệm x1, x2

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=5m\\P=x_1.x_2=5m-1\end{matrix}\right.\)

Ta có: 

\(x_1^2+x_2^2=2\)

\(\left(x_1^2+2x_1x_2+x_2^2\right)-2x_1x_2=2\)

\(\left(x_1+x_2\right)^2-2x_1x_2-2=0\)

\(\left(5m^2\right)-2\left(5m-1\right)-2=0\)

\(25m^2-10m+2-2=0\)

\(25m^2-10m=0\)

\(5m\left(5m-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{2}{5}\end{matrix}\right.\)

Vậy ...

14 tháng 4 2022

\(\text{∆}=\left(-5m\right)^2-4.\left(5m-1\right)\)

\(=25m^2-20m+4\)

\(=\left(5m-2\right)^2>0\forall m\)