Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC ) và phân giác BE của ABC ( E thuộc AC ) cắt nhau tại I. Chứng minh rằng:
a) IH.AB=IA.BH
b)AB^2=BH.BC
c) IH/IA=AE/EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
d: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a) \(\Delta ABH \) có BI là phân giác \(\widehat{ABH}\) ,Áp dụng tính chất đường phân giác ta có:
\(\dfrac{IH}{IA}=\dfrac{BH}{AB}\)
\(\Rightarrow IH.AB=IA.BH\)
b) Xét hai tam giác vuông \(\Delta BHA\) và \(\Delta BAC\) ta có:
\(\widehat B\) chung
\(\widehat{AHB}=\widehat{CAB}\)
Do đó \(\Delta BHA\)~\(\Delta BAC\)
\(\Rightarrow\)\(\dfrac {BH} {AB}=\dfrac{BA}{BC}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c)Ta có:\(\dfrac{IH}{IA}=\dfrac{BH}{AB}(1)\)
\(\dfrac{AE}{CE}=\dfrac{AB}{BC}\)(Be là đường phân gaics góc B)(2)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)(\(\Delta BHA\)~\(\Delta BAC\) )(3)
Từ (2) và (3) ta có:
\(\dfrac{AE}{CE}=\dfrac{BH}{AB}\)(4)
Từ (1) và (4) ta có:
\(\dfrac {IH}{IA}=\dfrac{AE}{EC}\)
d) Ta có:\(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}=90^o\)
Mà:\(\widehat{ABE}=\widehat{IBH}\)
\(\Rightarrow \widehat{BEA}=\widehat{BIH}\)
Mà \(\widehat{BIH}=\widehat{AIE}\)(đối đỉnh)
\(\Rightarrow \widehat{AIE}=\widehat{AEI} \)
Do đó \(\Delta AIE\) cân
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
Do đó: ΔHBA\(\sim\)ΔABC
b: Xét ΔBAC có BD là phân giác
nên DA/DC=BA/BC(1)
Xét ΔBHA có BI là phân giác
nên IH/IA=BH/BA(2)
Ta có: ΔHBA\(\sim\)ΔABC
nên BA/BC=BH/BA(3)
Từ (1), (2) và (3) suy ra IH/IA=DA/DC
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)