K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

ko biết

 

17 tháng 3 2022

Ko biết thì đừng nhắn. bộ rảnh nắm à

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

d: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

20 tháng 5 2019

a) \(\Delta ABH \) có BI là phân giác \(\widehat{ABH}\) ,Áp dụng tính chất đường phân giác ta có:

\(\dfrac{IH}{IA}=\dfrac{BH}{AB}\)

\(\Rightarrow IH.AB=IA.BH\)

b) Xét hai tam giác vuông \(\Delta BHA\)\(\Delta BAC\) ta có:

\(\widehat B\) chung

\(\widehat{AHB}=\widehat{CAB}\)

Do đó \(\Delta BHA\)~\(\Delta BAC\)

\(\Rightarrow\)\(\dfrac {BH} {AB}=\dfrac{BA}{BC}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

c)Ta có:\(\dfrac{IH}{IA}=\dfrac{BH}{AB}(1)\)

\(\dfrac{AE}{CE}=\dfrac{AB}{BC}\)(Be là đường phân gaics góc B)(2)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)(\(\Delta BHA\)~\(\Delta BAC\) )(3)

Từ (2) và (3) ta có:

\(\dfrac{AE}{CE}=\dfrac{BH}{AB}\)(4)

Từ (1) và (4) ta có:

\(\dfrac {IH}{IA}=\dfrac{AE}{EC}\)

d) Ta có:\(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}=90^o\)

Mà:\(\widehat{ABE}=\widehat{IBH}\)

\(\Rightarrow \widehat{BEA}=\widehat{BIH}\)

\(\widehat{BIH}=\widehat{AIE}\)(đối đỉnh)

\(\Rightarrow \widehat{AIE}=\widehat{AEI} \)

Do đó \(\Delta AIE\) cân

20 tháng 5 2019

Thanks

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Xét ΔBAC có BD là phân giác

nên DA/DC=BA/BC(1)

Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(2)

Ta có: ΔHBA\(\sim\)ΔABC

nên BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=DA/DC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

 

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)