K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2023

loading...

a: goc MAN=1/2*sđ cung MN=90 độ

góc IAN+góc IHN=180 độ

=>IANH nội tiếp

b: góc MCD=1/2*sđ cung MD

góc MAC=1/2*sđ cung MC

sđ cung MC=sđ cung MD

=>góc MCD=góc MAC

c: Xet ΔMCI và ΔMAC có

góc MCI=góc MAC

góc CMI chung

=>ΔMCI đồng dạng với ΔMAC

=>MC/MA=MI/MC

=>MC^2=MA*MI

20 tháng 4 2016

 bạn gì đó giúp mình giải bài toán này vs

14 tháng 9 2019

a,  H I B ^ = H K B ^ = 180 0

=> Tứ giác BIHK nội tiếp

b, Chứng minh được: DAHI ~ DABK (g.g)

=> AH.AK = AI.AB = R 2 (không đổi)

c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm

25 tháng 2 2017

bạn có cần giải bài này nữa k? mk giúp ^-^

25 tháng 2 2017

mk tóm tắt các bc nhé:

a) -Xét tamgiac HAC có góc DAC+ góc ACF= 90'(1)

- góc ANF=1/2 cung AD; góc DAC=1/2 cung BD ( sđ góc nt ..=1/2..) 

- góc DAC+ góc ANF= 1/2(cug AD+cug BD)=1/2*180=90'(2)

từ (1) (2)<=> ACF=ANF 

b)  xét tứ giác AFCN có góc ACF=ANF(cm ở a) <=> AFCN nt đg tròn( dấu hiệu nhận bt t4 của đg tròn nt)

c)xét twgiac AFCN nt đg tròn(cm ở b) có NAF+NCF=180'(3) ; AFC+ANC=180'(4)

ta có: AFC+CFE=180'(5) (2 góc kề bù)

từ (4) (5)=> ANC=CFE

xét tamgiac NAE và FCE có góc CEF: chung ; ANC=CFE(cmt)=> tamgiac NAE =tamgiac FCE

=> góc FCE=NAF(2 góc tg uwg)(6)

từ (3) (6)=> góc NCF+FCE=180'

=> N,C, E thg hàng

mk tóm tắt thôi đấy nếu bn làm thì trình bày đầy đủ hơn 

ta lại có:góc 

31 tháng 12 2021

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét tứ giác AECK có \(\widehat{AEC}+\widehat{AKC}=90^0+90^0=180^0\)

nên AECK là tứ giác nội tiếp

b: Xét ΔIAB có

BK,IE là các đường cao

BK cắt IE tại C

Do đó: C là trực tâm của ΔIAB

=>AC\(\perp\)IB tại D

Xét tứ giác CEBD có \(\widehat{CEB}+\widehat{CDB}=90^0+90^0=180^0\)

nên CEBD là tứ giác nội tiếp

Xét tứ giác AKCE có \(\widehat{AKC}+\widehat{AEC}=90^0+90^0=180^0\)

nên AKCE là tứ giác nội tiếp

Xét tứ giác IKCD có \(\widehat{IKC}+\widehat{IDC}=90^0+90^0=180^0\)

nên IKCD là tứ giác nội tiếp

Ta có: \(\widehat{DKC}=\widehat{DIC}\)(DIKC nội tiếp)

\(\widehat{EKC}=\widehat{EAC}\)(KAEC nội tiếp)

mà \(\widehat{DIC}=\widehat{EAC}\left(=90^0-\widehat{DBA}\right)\)

nên \(\widehat{DKC}=\widehat{EKC}\)

=>KC là phân giác của góc DKE

Ta có: \(\widehat{KDC}=\widehat{KIC}\)(DIKC là tứ giác nội tiếp)

\(\widehat{EDC}=\widehat{EBC}\)(EBDC nội tiếp)

mà \(\widehat{KIC}=\widehat{EBC}\left(=90^0-\widehat{KAB}\right)\)

nên \(\widehat{KDC}=\widehat{EDC}\)

=>DC là phân giác của góc KDE

Xét ΔKED có

DC,KC là các đường phân giác

Do đó: C là tâm đường tròn nội tiếp ΔKED

=>C cách đều ba cạnh của ΔKED