K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>DA=DE và góc BED=90 độ
b: BA=BE

DA=DE

=>BD là trung trực của AE 

DA=DE

DE<DC

=>DA<DC

14 tháng 4 2023

Vẽ hình đc k

 

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

=>AD=ED

b: BA=BE

DA=DE
=>BD là trung trực của AE

AD=DE
DE<DC

=>AD<DC

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>DA=DE
b: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

c: BA=BE

DA=DE
=>BD là trung trực của AE

AD=DE
DE<DC

=>AD<DC

a: Xét ΔDAB và ΔDEB có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔDAB=ΔDEB

=>góc DEB=90 độ

=>DE vuông góc BC

b: AD=DE

mà DE<DC

nên AD<DC

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC
=>ΔDAF=ΔDEC

24 tháng 12 2016

A B C D E F p/s:hình ảnh chỉ mang t/c minh họa

a)Xét ΔABD và ΔEBD có:

AB=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD:cạnh chung

=> ΔABD=ΔEBD(c.g.c)

=> \(\widehat{BAD}=\widehat{BED}=90^o\)

=> \(DE\perp BC\)

Vì: ΔABD=ΔEBD(cmt)

=>AD=DE

Vì: AB=BE(gt) ; AD=DE(cmt)

=> B,D thuộc vào đường trung trực của đt AE

=>BD là đường trung trực của đt AE

=>\(AE\perp BD\)

b) Xét ΔDEC vuông tại E(cmt)

=> \(DE< DC\)

Mà: DE=AD

=> AD<DC

c)Vì: BF=BA+AF ; BC=BE+EC

Mà: BF=BC(gt); BE=BA(gt)

=>AF=EC

Xét ΔADF và ΔEDC có:

AF=EC(cmt)

\(\widehat{FAD}=\widehat{DEC}=90^o\left(cmt\right)\)

AD=DE(cmt)

=>ΔADF=ΔEDC(c.g.c)

24 tháng 12 2016

.

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

DD
20 tháng 7 2021

a) Xét tam giác \(ABD\)và tam giác \(EBD\)có: 

\(AB=EB\)

\(\widehat{ABD}=\widehat{EBD}\)

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)

do đó \(DE\perp BC\).

\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).

\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).

Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).

b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền) 

c) Xét tam giác \(ADF\)và tam giác \(EDC\)có: 

\(DA=DE\)

\(CE=FA\)

\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)

\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)

d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng. 

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD
BD chung

=>ΔBAD=ΔBED

=>AD=ED

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>E,D,F thẳng hàng

c: BA=BA

DA=DE

=>BD là trung trực của AE

AD=DE
DE<DC

=>AD<DC

DD
19 tháng 12 2020

Xét \(\Delta ABD\)và \(\Delta EBD\)có: 

\(AB=EB\)(giả thiết) 

\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c) 

\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng) 

\(\Rightarrow DE\perp BC\).