b) \(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề bài ta có:
\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{-37}{45}\)
\(x+\frac{8}{45}=\frac{-37}{45}\)
\(x=\frac{-37}{45}-\frac{8}{45}\)
\(x=\frac{-45}{45}=1\)
đặt A=4/5.9+4/9.13+4/13.17+...+4/41.45
=1/5-1/9+1/9-1/13+1/13-1/17+...+1/41-1/45
=1/5-1/45
=8/45
suy ra x+8/45=-37/45
suy ra x=-1
x + 4/5.9 + 4/9.13 + ... + 4/41.45 = -37/45
<=> x + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/41 - 1/45= -37/45
<=> x + 1/5 - 1/45 = -37/45
<=> x + 9/45 = -36/45
<=>x= -45/45=-1
a) \(\frac{x-1}{21}=\frac{3}{x+1}\)( ĐKXĐ : x khác -1 )
<=> ( x - 1 )( x + 1 ) = 21.3
<=> x2 - 1 = 63
<=> x2 = 64
<=> x2 = ( ±8 )2
<=> x = ±8 ( tmđk )
b) \(\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)( ĐKXĐ : x khác 0 )
<=> \(\frac{7}{x}+\left(\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}\right)=\frac{29}{45}\)
<=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
<=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
<=> \(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
<=> \(\frac{7}{x}=\frac{7}{15}\)
<=> x = 15 ( tmđk )
a) \(\frac{x-1}{21}=\frac{3}{x+1}\Leftrightarrow\left(x-1\right)\left(x+1\right)=3.21\)
\(\Leftrightarrow x^2-1=63\Rightarrow x^2=63+1=64\Rightarrow x=\pm8\)
b) \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}=\frac{7}{15}\Rightarrow x=15\)
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9}{45}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{21}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
\(\Rightarrow x=15\)
Vậy \(x=15\).
\(\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
=> \(\frac{7}{x}+4\left(\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+....+\frac{1}{41\cdot45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+4\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+4\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+4\cdot\frac{32}{45}=\frac{29}{45}\)
=> \(\frac{7}{x}+\frac{128}{45}=\frac{29}{45}\)
=> \(\frac{7}{x}=-\frac{11}{5}\)
Đến đây tự giải quyết :))
Ta có : \(\frac{7}{x-2005}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)\)
\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}-\frac{8}{45}=\frac{7}{15}\)
\(\Rightarrow x-2005=15\Rightarrow x=15+2005=2020\)
Vậy x =2020
\(x+\frac{3}{5.9}+\frac{3}{9.13}+\frac{3}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(\Leftrightarrow x+3\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{3}{4}.\frac{8}{45}=-\frac{37}{45}\)
\(\Leftrightarrow x+\frac{2}{15}=-\frac{37}{45}\)
\(\Leftrightarrow x=-\frac{43}{45}\)
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{9}{45}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\Rightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}\)
\(\Rightarrow x=\frac{7}{\frac{21}{45}}=15\)
Vậy \(x=15\).
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}\)
\(\Leftrightarrow x=\frac{7.45}{21}=15\)
\(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=1\)
\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=1\)
\(x+\frac{1}{5}-\frac{1}{45}=1\)
\(x+\frac{8}{45}=1\)
\(\Rightarrow x=1-\frac{8}{45}\)
\(\Rightarrow x=\frac{37}{45}\)
\(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=1\)
\(x+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=1\)
\(x+\left[4\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{41.45}\right)\right]=1\)
\(x+\left[4.\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\right]=1\)
\(x+\left[1\left(\frac{1}{5}-\frac{1}{45}\right)\right]=1\)
\(x+\frac{8}{45}=1\)
\(x=1-\frac{8}{45}\)
\(x=\frac{37}{45}\)