cho các số thực dương x,y,z thỏa mãn x+y+z=4
C/m \(\frac{1}{xy}+\frac{1}{xz}\ge1\)
ai giúp mình với, đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{x\left(y+z\right)}\)(1)
Lại có : \(x\left(y+z\right)\le\left(\frac{x+y+z}{2}\right)^2=4\)( theo AM-GM )
=> \(\frac{1}{x\left(y+z\right)}\ge\frac{1}{4}\)
=> \(\frac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{x\left(y+z\right)}\ge1\)
=> \(\frac{1}{xy}+\frac{1}{xz}\ge1\)( đpcm )
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=2\\y=z=1\end{cases}}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)
Đẳng thức xảy ra <=> x = 2 ; y = z = 1
Vì \(x+y+z=4\Rightarrow x=4-\left(y+z\right)\)
Mặt khác : \(\frac{1}{xy}+\frac{1}{xz}\ge1\)
\(\Leftrightarrow\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge1\Leftrightarrow\frac{1}{y}+\frac{1}{z}\ge x\left(1\right)\)
Thay x = 4 - ( y +z ) vào (1) ta được
\(\frac{1}{z}+\frac{1}{y}\ge4-\left(y+z\right)\Leftrightarrow\frac{1}{y}-2+y+\frac{1}{z}-2+z\ge0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right)^2+\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right)^2\ge0\) luôn đúng
dấu " = " xảy ra khi y = z = 1 và x= 2
Một hướng giải bằng Cô si (AM-GM) đỡ cồng kềnh hơn!
\(VT=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{4^2}=1\)
Đẳng thức xảy ra khi \(y=z;x=y+z;x+y+z=4\)
\(\Rightarrow x=2;y=z=1\)
Vậy...
1/xy+1/xz>=1
<=> 1/x(1/y+1/z) >=1
<=>1/y+1/z>=x=4-y-z
<=>1/y+y+1/z+z>=4
<=>(1/y+y)+(1/z+z)>=4 (dễ nhá,tự cm đc chứ j)
>=2 >=2
\(4=\frac{x}{2}+y+\frac{x}{2}+z\ge\sqrt{2xy}+\sqrt{xz}\)
đặt căn 2xy là a,,,,,,căn 2xz là b ....Ta có \(a+b\le4\) và cần CM :\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)^2\ge\frac{1}{2}\left(\frac{4}{a+b}\right)^2\ge\frac{1}{2}\Rightarrowđpcm\)
Câu hỏi của Lê Thanh Thưởng - Toán lớp 9 - Học toán với OnlineMath
bài này dòng thứ 3 mình gõ nhầm nhé sửa thành "Từ x+y+z=4"