Chứng tỏ các đa thức sau ko có nghiệm :
a.x^2-6x+29
b.x^2+4x-25
Giải giùm em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
a,x2+6x+10
=x2+3x+3x+3.3+1
=x(3+x)+3(3+x)+1
=(3+x)(3+x)+1
=(3+x)2+1
Vì (3+x)2>hoặc=0
=>(3+x)2+1>1
Vậy đa thức trên ko có ngiệm
a) x2 + 6x + 10
= x2 + 3x + 3x + 9 + 1
= x ( x + 3 ) + 3 ( x + 3 ) + 1
= ( x + 3 ).( x + 3 ) + 1
= ( x + 3 )2 + 1 . Vì ( x + 3 ) > 0 hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm
b) x2 + 4x + 7
= x2 + 2x + 2x + 4 + 3
= x ( x + 2 ) + 2 ( x + 2 ) + 3
= ( x + 2 ).( x + 2 ) + 3
= ( x + 2 )2 + 3 . Vì ( x + 2 )2 > 0 hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
Có: \(-5-4x^2=0\)
\(5+4x^2=0\)
\(4x^2=-5\left(vl\right)\)
=> Đa thức vô nghiệm
Ta có:
x2 + 4x + 5
= x2 + 2.2x + 22 + 1
= (x + 2)2 + 1
Do (x + 2)2 ≥ 0 ∀ x
=> (x + 2)2 + 1 ≥1 ∀ x
Vậy x2 + 4x + 5 không có nhiệm
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
a.\(x^2-6x+29=x^2-6x+9+20=\left(x-3\right)^2+20>0\forall x\)
=> ĐPCM
b. \(x^2+4x-25=x^2+4x+4-29=\left(x+2\right)^2-29\ne0\forall x\)
=>ĐPCM