Một đội sản xuất dự định làm 1500 sản phẩm trong một thời gian nhất định. Nhưng khi bắt đầu làm việc mỗi ngày đội sản xuất nhiều hơn 10 sản phẩm do đó đội hoàn thành công việc sớm 5 ngày. Tính số sản phẩm đội làm được một ngày theo dự định?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là số sản phẩm làm được trong 1 ngày thì thời gian quy định là \(\frac{600}{x}\)với x>0
thời gian làm được 400 sản phẩm là \(\frac{400}{x}\)ngày
thời gian quy định còn lại là \(\frac{600}{x}\)-\(\frac{400}{x}\)=\(\frac{200}{x}\)
sản phẩm làm được trong 1 ngày với năng suất mới là x+10
=>thời gian làm với năng suất mới là\(\frac{200}{x+10}\)
vì sớm hơn quy định 1 ngày nên ta có pt
\(\frac{200}{x}\)-1=\(\frac{200}{x+10}\)
<=>\(\frac{200-x}{x}=\)\(\frac{200}{x+10}\)
<=>\(\left(200-x\right)\left(x+10\right)=200x\)
<=>\(200x-10x-x^2+2000-200x=0\)
<=>-x2-10x+2000=0
<=>-\(\left(x^2+10x+25\right)+25+2000=0\)
<=>-\(-\left(x+5\right)^2=-2025\)
<=>\(\left(x+5\right)^2=2025\)
<=>x+5=45 vì x>0
<=>x=40
số sản phẩm làm được trong 1 ngày là 40 sản phẩm
tick nha
Gọi số sản phẩm làm theo kế hoạch mỗi ngày là x>0 và số ngày dự định là y>0
Ta có: \(xy=200\)
4 ngày đầu làm được: \(4x\) sản phẩm
Những ngày còn lại: \(\left(y-6\right)\left(x+10\right)\)
Theo bài ra ta có hệ:
\(\left\{{}\begin{matrix}xy=200\\4x+\left(y-6\right)\left(x+10\right)=200\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=200\\5y-x=30\end{matrix}\right.\)
\(\Rightarrow y\left(5y-30\right)=200\)
\(\Leftrightarrow y^2-6y-40=0\Rightarrow\left[{}\begin{matrix}y=10\\y=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{200}{10}=20\)
Gọi số sản phẩm đội dự định làm mỗi ngày là x (x ∈ ℕ * , x < 84) (sản phẩm)
*) Theo kế hoạch, thời gian hoàn thành là 1000/x (ngày)
*) Thực tế, mỗi ngày làm được x + 10 (sản phẩm)
Thời gian hoàn thành 1000/(x+10) (ngày)
Vì thời gian thực tế ít hơn thời gian dự định là 2 ngày nên ta có phương trình:
Phương trình có hai nghiệm phân biệt: x 1 = − 25 – 75 = −100 (loại)
và x 2 = −25 + 75 = 50 (tmđk)
Vậy theo kế hoạch, mỗi ngày tổ dự định làm 50 sản phẩm
Đáp án: C
Lời giải:
Gọi số ngày dự định hoàn thành là $a$ ngày.
Số sản phẩm dự kiến: $10a$ (sản phẩm)
Xét thực tế:
Đội làm được 1 nửa số sản phẩm (tức là $5a$ sản phẩm trong $\frac{a}{2}$ ngày)
$5a$ sản phẩm còn lại đội làm trong: $\frac{5a}{10+5}=\frac{a}{3}$ (ngày)
Số ngày hoàn thành thực tế: $\frac{a}{2}+\frac{a}{3}=\frac{5}{6}a$ (ngày)
Theo bài ra ta có:
$a-\frac{5}{6}a=2$
$\Leftrightarrow \frac{a}{6}=2$
$\Leftrightarrow a=12$ (ngày)
Số sản phẩm dự định: $10a=12.10=120$ (sp)