K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

sử dụng đồng dư thức hoặc hằng đẳng thức

9 tháng 5 2016

hhv vbmkj55144466

17 tháng 10 2016

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

16 tháng 10 2016

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

19 tháng 10 2016

ngu người bài này mà không biết giải

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

29 tháng 11 2017

a là x và y thuộc nhóm rỗng

b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009

c là vì 4S+1 là 5^2016 chia hết cho 5^2016

vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

18 tháng 10 2016

tớ có lớp 7 thui

8 tháng 3 2018

Ta có A= 1/2015 + 2/2016 + 3/2017 + ... +2016/4030- 2016

          A= 2015-2014/2015 + 2016-2014/2016 +...+4030-2014/4030-2016

           A= 2015/2015-2014/2015+ 2016/2016-2014/2016 + ..... +4030/4030-2014/4030 -2016

           A= 1-2014/2015 + 1-2014/2016 +....+1-2014/4030 -2016

           A= (1+1+1+1+........+1) -(2014/2015+2014/2016+......+2014/4030) -2016

            A=2016  -  2014.(1/2015+1/2016+....+1/4030)   -2016

             A= (2016 - 2016 ) - 2014. ( 1/2015+1/2016+.....+1/4030)

             A=-2014.(1/2015+1/2016+....+1/4030)

   mà B = 1/2015+1/2016+....+1/4030

      nên A : B = -2014

8 tháng 3 2018

các bn hãy ủng hộ mk nhé !!! Thanks everyone!!!