K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

c: Xét ΔCDB có

BE,CA là trung tuyến

BE cắt CA tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC

29 tháng 4 2021

Cho mình xin câu trả lời đúng nhất ạ (bạn nào có thể về cho mọi hình đc ko??)

29 tháng 4 2021

Câu a

30 tháng 5 2021

a) Xét △ABC vuông tại A có :

          AB2+AC2=BC2(định lý py-ta-go)

⇒       AC2=BC2-AB2

⇒       AC2=102-62

⇒       AC2=100-36

⇒       AC2=64

⇒       AC=8

            Vậy AC=8cm

b)

Xét △ABC và △ADC có :

    AC chung

    AB=AD(gt)

    ∠BAC=∠DAC(=90)

⇒△ABC=△ADC(c-g-c)

⇒BC=DC(2 cạnh tương ứng)

Xét △BCD có BC=DC(cmt)

⇒△BCD cân tại C (định lý tam giác cân)

c)

Xét △BCD cân tại C có

K là trung điểm của BC (gt)

A là trung điểm của BD (gt)

⇒DK , AC là đường trung tuyến của △BCD

 mà DK cắt AC tại M nên M là trọng tâm của △BCD

⇒CM=2/3AC

⇒CM=2/3.8

⇒CM=16/3cm

d)

Xét △AMQ và △CMQ có

     MQ chung 

     MA=MC(gt)

     ∠AMQ=∠CMQ(=90)

⇒△AMQ=△CMQ(C-G-C)

⇒∠MAQ=∠C2(2 góc tương ứng )

     QA=QC( 2 cạnh tương ứng)

Vì △ABC=△ADC(theo b)

⇒∠C1=∠C2(2 góc tương ứng)

∠C1=∠MAQ

mà 2 góc này có vị trí SLT

⇒AQ//BC

⇒∠QAD=∠CBA( đồng vị )

mà∠CBA=∠CDA(△BDC cân tại C)

⇒∠QAD=∠QDA

⇒△ADQ cân tại Q

⇒QA=QD

mà QA=QC(cmt)

⇒DQ=CQ

⇒BQ là đường trung tuyến của△BCD 

⇒B,M,D thẳng hàng

 

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xet ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

=>ΔABC=ΔADC

=>CB=CD

=>ΔCBD cân tại C

c: Xet ΔCBD có

CA,BE là trung tuyến

CA căt EB tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Vậy: AC=12cm

25 tháng 3 2017

a, ta có:

         BC2=AB2+AC2

thay  152=92+AC2

        225=81+AC2

       AC2=144

       AC=12

  Vậy cạnh AC=12cm

 Mà AC > AB(vì 12>9)

=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)

b,ta có:BA=DA(vì A là trung điểm của BD)

xét tam giác BCA và tam giácDCA

có:BA=DA(C/m trên)

    góc BAC=góc DAC (=900)

    AC là cạnh chung

=>tam giác BCA=tam giác DCA(c.g.c)

=>BC=DC(2 cạnh t/ứng)

=>tam giác BDC cân tại C

mk chỉ làm đc thế thôi

ok

19 tháng 5 2016

hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:

a)  Xét tam giác ABC vuông ở A có:

AB2+AC2=BC2 (đ/l pytago)

=>AC2=BC2-AB2=152-92=144

=>AC=12(cm)

Vì AC>AB (12cm>9cm)

=>^ABC>^ACB (đ/l về góc đối diện.....)

b Vì AB _|_ AC (tam giác ABC vuông tại A)

mà AD là tia đối tia AB=>AD _|_ AC

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:

AC:cạnh chung

AB=AD (A là trung điểm của BD)

=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)

 

 

19 tháng 5 2016

a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2

152 = 92 +AC2

AC2 =152-92=144

AC=12 (cm)

Xét tam giác ABC: AC > AB (12 cm >9cm)

=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)

b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)

                   90*     + góc DAC = 180*

=> góc DAC =180*-90*=90*

=> tam giác ADC vuông tại A.

Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:

AB = AD (A là trung điểm của BD)

AC là cạnh chung

=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)

=> BC = DC ( hai cạnh tương ứng)

=> tam giác BDC cân tại C.

c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.

   K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.

CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.

=> CM =2/3CA    

     CM =2/3.12

     CM = 8 (cm)

Vậy CM=8 cm