CHO TAM GIÁC ABC CÂN TẠI A,VẼ AH VUÔNG GÓC VỚI BC TẠI H:
A)SO SÁNH HB VÀ HC
B)GỌI I LÀ TRUNG ĐIỂM CỦA AB,AH CẮT CI TẠI G.TỪ H VẼ ĐƯỜNG THẲNG SONG SONG VỚI AB CẮT AC TẠI M.CHỨNG MINH 3 ĐIỂM M,G,B THẲNG HÀNG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
Hỏa Long Natsu bác eii, cái bài này là ae mk tự vẽ hình hay sao ý.
a) Xét \(\Delta AHB\text{ và }\Delta AHC\)
\(AB=AC\)
\(\widehat{A_1}=\widehat{A_2}\)
AH là cạnh chung
Nên: \(\Delta AHB=\Delta AHC\left(c-g-c\right)\)
\(\Rightarrow BH=CH\left(2\text{ cạnh tương ứng}\right)\)
\(\Rightarrow\Delta ABC\perp AH\left(\text{là phân giác cũng vừa là đường cao}\right)\)
\(\Rightarrow AH\perp BC\)
b) \(BH=\frac{36}{2}=18\left(cm\right)\)
\(AB^2=AH^2+BH^2\left(\text{áp dụng định lý Py-Ta-Go}\right)\)
\(AH^2=AB^2-BH^2\)
\(AH^2=30^2-18^2\)
\(AH^2=576\)
\(\Rightarrow AH=\sqrt{576}=24\left(cm\right)\)
c) \(AG=\frac{2}{3}.AH\)
\(\Rightarrow AH.\frac{2}{3}=24.\frac{2}{3}=16\left(cm\right)\)
\(AM=\frac{AB}{2}=\frac{30}{2}=15\left(cm\right)\)
\(\Rightarrow BA^2=AM^2+BM^2\)
\(\Rightarrow MB^2=BA^2-BM^2\)
\(MB^2=30^2-15^2\)
\(MB^2=\sqrt{675}=26\)
d) Bạn tự giải nha
a, Xét tam giác ABH và tam giác ACH có
góc bah =góc cah
ab =ac
góc B = góc C
=> tam giác abh = tam giác ach (g.c.g)
=>hb=hc
=>góc ahb = góc ahc
Mà góc AHB + góc AHC=180 độ
=>ah vuông góc với bc
b,bh=hc=36:2=18cm
áp dụng định lí PY-TA-GO vào tam giác ABH ta có
ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah=24cm
a) xét tam giác BAH và tam giác HAC có:
AB = AC (gt)
góc A1 = góc A2 ( vì AH là p/giác)
AH chung
=> tam giác BAH = tam giác HAC ( c.g.c)
=> HB = HC
ta có: góc AHB + góc AHC = 1800 ( kề bù)
=> 2 góc AHB = 1800
=> góc AHB = \(\frac{180^0}{2}=90^0\)
=> AH vuông góc BC
a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH<AH<AB
=>góc HAB<góc HBA<góc AHB
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
c: góc KAH=góc HAC
góc KHA=góc HAC
=>góc KAH=góc KHA
=>ΔAKH cân tại K
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trung điểm của AB
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN(cmt)
Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAMO=ΔANO(cmt)
nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)
hay \(\widehat{BAH}=\widehat{CAH}\)
mà tia AH nằm giữa hai tia AB,AC
nên AH là tia phân giác của \(\widehat{BAC}\)
c) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH chung
Do đó: ΔAHB=ΔAHC(c-g-c)
Suy ra: HB=HC(hai cạnh tương ứng)
Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay \(AH\perp BC\)(đpcm)
Hình vẽ : tự vẽ
a) Ta có : tan giác ABC cân tại A ( gt )
\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )
Ta có : AB = AC ( cmt )
Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )
\(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)
\(\Rightarrow AM=AN\)
Xét : \(\Delta\)AMO và \(\Delta\)ANO có
Cạnh AO chung
AM =AN (cmt )
\(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)
\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)
b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)
\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng )
Ta có :
\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)
Mà : Tia AH nằm giữa tia AB và tia AC
\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )
c) Ta có :
\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )
\(\Rightarrow\) AH cùng là đường cao và trung truyến
\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )
d) Ta có :
\(AH\perp BC\left(cmt\right)\)
\(\Rightarrow\widehat{OHC}=90^0\)
\(\Rightarrow\)OC lớn hơn HC
Mà HC = HB ( cmt )
\(\Rightarrow\) OC lớn hơn HB ( đpcm )
-Hết-