K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Giải :

\(N=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

=> \(N=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{101}\right)\right)\)

=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\right)\)

=> \(N=\frac{98}{303}\)

3 tháng 5 2017

N=1/2x(1/3-1/5+1/5-1/7+.....+1/99-1/101)

N=1/2x(1/3-1/101)

N=1/2x98/303

N=49/303

3 tháng 5 2017

\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1}{5}\)

\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

3 tháng 5 2017

N=1/2x(1/3-1/5+1/5-1/7+....+1/99-1/101)

N=1/2x(1/3-1/101)

N=1/2x98/101

N=49/101

23 tháng 4 2017

= 2 x [1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +1/7 -1/9 + .., +1/99 - 1/101

= 2 x [ 1 - 1/101 ]

= 2 x 100/101

= 200/101

t cho mik nha

23 tháng 4 2017

   \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+.........+\(\frac{2}{99.101}\)

=\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\)

= 1 - \(\frac{1}{101}\)\(\frac{100}{101}\)

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43

= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43

= 1/3 - 1/43

= 40/129

ỦNG HỘ NHA

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 +......+ 2/41.43

= 1/3-1/5 + 1/5-1/7 + 1/7-1/9 +.....+ 1/41-1/43

= 1/3-1/43

= 40/129.

3 tháng 4 2018

1/5.6 + 1/6.7 + 1/7.8 +...+ 1/24.25

=1/5 - 1/6 + 1/6-1/7 +1/7-1/8 + ... + 1/24-1/25

=> Kết quả là: 1/5 - 1/25 = 4/25

b) 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9+...+ 2/99.101

=2/1-2/3 + 2/3-2/5 + 2/5-2/7 + 2/7-2/9 + ... + 2/99-2/101

=> kết quả là 2/1 - 2/101 =200/101

3 tháng 4 2018

a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

=\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

=\(\frac{1}{5}-\frac{1}{25}\)

=\(\frac{4}{25}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

=\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

=\(2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

=\(2.\left(\frac{1}{1}-\frac{1}{101}\right)\)

=\(2.\frac{100}{101}\)

=\(\frac{200}{101}\)

16 tháng 10 2019

1-1/3-1/65

16 tháng 10 2019

\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)

\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(A=1-\frac{62}{195}\)

\(A=\frac{133}{195}\)

5 tháng 3 2017

Đề bài sai 

5 tháng 3 2017

\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)

4 tháng 5 2016

y=2/1.3 + 2/3.5 +2/5.7 +...+2/99.101

y= 1.(1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101)

y=1. ( 1-1/101)

y= 1. 100/101

y=100/101