Giữa hai bến sông A và B cách nhau 20 km/h có một đoàn cano trở khách. Cứ 20 phút lại có 1 cano đi rời A về B với vận tốc 20km/h. Ở B có một cano đi về A và khởi hành cùng lúc với một trong các cano đi từ A với vận tốc 10km/h. Hỏi cano đi từ B về A sẽ gặp bao nhiêu cano đi ngược lại ( không kể nơi giao nhau tại A và B). Cho rằng nước đứng yên và hai bến A và B nằm trên 1 đường thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc thực của canô là x (km/h), x > 3.
Gọi vận tốc khi đi xuôi dòng là: x + 3 (km/h)
Gọi vận tốc khi ngược dòng là: x - 3 (km/h)
Thời gian xuôi dòng là: \(\dfrac{30}{x+3}\)(giờ)
Thời gian ngược dòng là: \(\dfrac{30}{x-3}\)(giờ)
Nghỉ lại 40 phút hay \(\dfrac{2}{3}\) giờ ở B.
Theo đầu bài ta có phương trình : \(\dfrac{30}{x+3}+\dfrac{30}{x+3}+\dfrac{2}{3}=6\)
Giải phương trình:
16(x + 3)(x - 3) = 90(x + 3 + x - 3) hay: 4x2 - 45x - 36 = 0
\(\Delta\)= 2025 + 576 = 2601, \(\sqrt{\Delta}\) = 51
x1 = 12, x2 = \(\dfrac{-3}{4}\)(loại)
=> Vận tốc của canô trong nước yên lặng là 12 km/h.
Phương trình Giang viết có một chút sai sót nhỏ. Lần sau cần cẩn thận hơn em nhé.
Phương trình đúng phải là: \(\dfrac{30}{x-3}+\dfrac{30}{x+3}+\dfrac{2}{3}=6.\)
Gọi vận tốc cano khi nước yên lặng là x
Thời gian đi là 45/(x+3)
Thời gian về là 45/(x-3)
Theo đề, ta có: \(\dfrac{45}{x+3}+\dfrac{45}{x-3}=6,25\)
=>\(\dfrac{45x-135+45x+135}{x^2-9}=6,25\)
=>6,25x^2-56,25=90x
=>\(x=\dfrac{30+5\sqrt{42}}{4}\)
Tham khảo:
Gọi x (km/h) là vận tốc của ca nô khi xuôi dòng. Khi đó
Vận tốc của ca nô khi nước lặng yên là: x-6 (km/h)
Vận tốc của ca nô khi ngược dòng là: x-12 (km/h)
Ta thấy điều kiện của ẩn x>12 (vì vận tốc của ca nô khi ngược dòng phải lớn hơn 0)
Thời gian ca nô xuôi dòng từ A đến B là 36/x(giờ)
Thời gian ca nô ngược dòng từ B về A là 36/x-12 (giờ)
Tổng thời gian cả đi và về (từ 7 giờ sáng đến 11 giờ 30) là 4,5 giờ
Ta có phương trình:
36/x+36/x-12=9/2
<=> 4(x-12)+4x / x(x-12)= x(x-12) / 2x(x-12)
=> 8(x-12+x)=x(x-12)
<=>x(x-4)-24(x-4)=0
<=> (x-4)(x-24)=0
Phương trình này có 2 nghiệm là 4 và 24, nhưng chỉ có giá trị x=24 là thỏa mãn điều kiện của ẩn
Vậy vận tốc của ca nô khi xuôi dòng là 24km/h
Gọi vận tốc cano 1 là v1
vận tốc dòng nước là v2
Vận tốc thực của cano và vận tốc dòng nước là
Hai cano gặp nhau: s1+s2=sab
⇒\(\left(v_1-v_2\right)\cdot t+\left(v_1+v_2\right)\cdot t=75\)⇔\(\left(v_1-v_2+v_1+v_2\right)\cdot1,875=75\)⇔\(v_1=40\left(\dfrac{km}{h}\right)\)
cano 1 chậm hơn cano 2 2 h: t1-t2=2
⇒\(\dfrac{s_{ab}}{\text{}\text{}\text{}\text{}v_1-v_2}-\dfrac{s_{ab}}{\text{}\text{}\text{}\text{}v_1+v_2}=2\)⇔\(\dfrac{75}{\text{}\text{}\text{}\text{}40-v_2}-\dfrac{75}{\text{}\text{}\text{}\text{}40+v_2}=2\)
⇔\(\dfrac{75\left(40+v_2\right)-75\left(40-v_2\right)}{\text{}\text{}\text{}\text{}\left(40-v_2\right)\left(40+v_2\right)}=2\)
⇔\(\dfrac{75\left(40+v_2-40+v_2\right)}{1600-\left(v_2\right)^2}=2\)
⇔\(150v_2=3200-2\left(v_2\right)^2\)⇔\(-2\left(v_2\right)^2+150v_2+3200=0\)
⇔\(\left[{}\begin{matrix}v_2\approx92,329\\v_2\approx-17,329\end{matrix}\right.\)
Mà v2 là vận tốc nên\(v_2\approx92,329\) nhận
Vậy ....