Cho tam giác abc có ba góc nhọn các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔABE đồng dạng với ΔACF
b) HE.HB=HF.HC và ΔFHE đồng dạng với ΔBHC
c) H là giao điểm các đường phân giác của ΔDEF
d) \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
e) BH.BE+AH.AD=AB2
Giúp mình với mọi người!!!
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
okee