Cho a,b,c là 3 cạnh 1 tam giác, chu vi của tam giác đó bằng 2. C/m R:
\(a^2+b^2+c^2+2abc< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt suy ra a < b + c nên 2a < a + b + c = 2
\(\Rightarrow a< 1\).
Chứng minh tương tự: \(b< 1;c< 1\).
Do đó \(\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\Leftrightarrow abc< ab+bc+ca-1\) (Do a + b + c = 2)
\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca-1\right)=\left(a+b+c\right)^2-2=2\) (đpcm).
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)
đúng nha
a^2+b^2+c^2=(a+b+c)^2-2ab-2bc-2ca=1-2ab-2bc-2ca
((a^2+b^2+c^2)-1)/2abc=(1-2ab-2bc-2ca-1)/abc=-(1/a+1/b+1/c)
T=4/a+b +4/b+c +4/c+a<=1/a+1/b+1/b+1/c+1/c+1/a-1/a-1/b-1/c=1/a+1/b+1/c<=9
Dấu = khi a=b=c=1/3
Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra:
Suy ra ĐCCM?
Do a;b;c là 3 cạnh của tam giác nên: a + b + c = 2
Áp dụng bất đẳng thức của tam giác:
\(\Rightarrow\)a < b + c
\(\Rightarrow\)a + a < a + b + c
\(\Rightarrow\)2a < 2 \(\Rightarrow\)a < 1
Làm tương tự; ta chứng minh được b < 1; c < 1
\(\Rightarrow\)(1 - a)(1 - b)(1 - c) > 0
\(\Rightarrow\)(1 - a - b + ab)(1 - c) > 0
\(\Rightarrow\)1 - a - b + ab - c + ac + bc - abc > 0
\(\Rightarrow\)1 - (a + b + c) + (ab + ac + bc) > abc
\(\Rightarrow\)2[1 - (a + b + c) + (ab + ac + bc)] > 2abc
\(\Rightarrow\)2 - 2(a + b + c) + 2(ab + ac + bc) - 2abc > 0
\(\Rightarrow\)2abc + (a + b + c)^2 - 2ab - 2ac - 2bc < 2 (vì a + b + c = 2)
\(\Rightarrow\)\(a^2+b^2+c^2+2abc< 2\)(ĐPCM)