a) tam giác ABD là tam giác gì? Vì sao?
b) chứng minh AD là tia phân giác của góc CAH.
c) gọi E là hình chiếu của D trên AC. Chứng minh AD là đường trung trực của đoạn thẳng HE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg BAD có: BD = BA(gt) => tg BAD cân tại B
=> ^BAD = ^BDA (TC tg cân)
Ta có: ^BAD + ^CAD = ^BAC = 90 độ
Mà ^CAD + ^ADE = ^DEA = 90 độ
=> ^BAD = ^ADE
Lại có: ^BAD = ^BDA (tg BAD cân tại B )
=> ^ADE = ^BDA
Xét tg vuông AHD và tg vuông ADE:
^ADE = ^BDA (cmt)
AD chung
=> tg vuông AHD = tg vuông ADE (ch - gn)
=> AE = AH ( 2 cạnh tg ứng)
Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
hay \(\widehat{BAD}=\widehat{HDA}\)(1)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{EAD}=90^0\)(2)
Ta có: ΔHDA vuông tại H(AH\(\perp\)HD)
nên \(\widehat{DAH}+\widehat{HDA}=90^0\)(hai góc nhọn phụ nhau)(3)
Từ (1), (2) và (3) suy ra \(\widehat{EAD}=\widehat{HAD}\)
Xét ΔADH vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)(cmt)
Do đó: ΔADH=ΔAED(cạnh huyền-góc nhọn)
hay AH=AE(hai cạnh tương ứng)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
cho tam giác ABC cân tại A kể BD vuông góc với AC kề CE vuông góc với AB. Gọi y là giao điểm của BD và Ce
a)tam giác ABD= tam giác ACE
b)EY=YD
c)AY vuông BC
Xét ΔBAD và ΔBHD có
BA=BH
góc ABD=góc HBD
BD chung
Do đó: ΔBAD=ΔBHD
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tai B
b: góc CAD+góc BAD=90 độ
góc HAD+góc BDA=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>ĐPCM
c: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔAHD=ΔAED
=>AH=AE; DH=DE
=>AD là trung trực của HE