Cho Tam giác ABC cân tại A, đường cao AH. Qua H kẻ HM song song với AB (M thuộc AC) a) Chứng mình tâm giác AHB= tam giác AHC và BH=HC b)Chứng mình tam giác AMH cân c)Gọi G là trong tâm của tam giác ABC. Chứng minh rằng B;G;M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có:
AB = AC, B = C \(\Rightarrow\)\(\Delta AHB\)= \(\Delta AHC\)(cạnh huyền - góc nhọn)
b) Xét \(\Delta AHC\)theo định lí Pi-ta-go ta có:
\(AC^2=AH^2+HC^2=4^2+3^2\)\(=16+9=25\Rightarrow AC=5cm\)
c) Xét \(\Delta AHC\) và \(\Delta MHC\)có:
AH = MH, CH chung \(\Rightarrow\)\(\Delta AHC\)= \(\Delta MHC\)( cạnh góc vuông )
\(\Rightarrow\)HAC = HMC \(\Rightarrow\)HMC = HAB \(\Rightarrow\)AB // CM
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
CB chung
=>ΔNBC=ΔMCB
=>góc GBC=góc GCB
=>ΔGCB cân tại G
c: góc ECG+góc BCG=90 độ
góc GBC+góc GEC=90 độ
mà góc BCG=góc GBC
nên góc ECG=góc GEC
=>GC=GE=GB
=>G là trung điểm của BE
Xét ΔEBC có GD//CB
nên GD/CB=EG/EB=1/2
=>CB=2GD
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: góc MAH=góc BAH
góc BAH=góc MHA
=>góc MAH=góc MHA
=>ΔMAH cân tại M
c: Xét ΔACB có
H la trung điểm của CB
HM//AB
=>M là trung điểm của AC
=>B,G,M thẳng hàng