K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2023

\(P=\dfrac{6x+6y+2xy}{2}=\dfrac{6x+6y+2xy+10-10}{2}\)

\(=\dfrac{6x+6y+2xy+2\left(x^2+y^2\right)+6}{2}-5\)

\(=\dfrac{\left(x+y+2\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-5\ge-5\)

\(P_{min}=-5\) khi \(x=y=-1\)

7 tháng 5 2023

Thầy có thể giải thích chi tiết được không ạ em hơi khó hiểu ạ

30 tháng 5 2023

BẠN THAM KHẢO :

loading...

18 tháng 5 2021

120

18 tháng 5 2021

\(10x^2+\frac{1}{x^2}+\frac{y^2}{4}=20\)

\(=>\left(x^2+\frac{1}{x^2}\right)+\left(9x^2+\frac{y^2}{4}\right)=20\)

\(=>\left(x+\frac{1}{x}\right)^2+\left(3x+\frac{y}{2}\right)^2=20\)

Ta có \(x+\frac{1}{x}\ge2\sqrt{\frac{x.1}{x}}\ge2\)dấu = xảy ra khi x=1

=> y=6 

=> MinP=6

Mình nghxi zậy

NV
29 tháng 1 2021

Đề bài là thế này đúng không bạn:

Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)

Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)

P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)

29 tháng 1 2021

Tính giá trị lớn nhất

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

2 tháng 2 2019

Đáp án D

Ta có C 12 1 . C 10 1 = 120

Khi đó  C 12 1 . C 10 1 = 120   . Đặt C 12 1 . C 10 1 = 120

Ta luôn có C 12 1 . C 10 1 = 120

C 12 1 . C 10 1 = 120  Suy ra C 12 1 . C 10 1 = 120

Xét hàm số  f t = t 2 − 8 t + 3   trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1

Hàm số f(t)  liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞

Do đó, giá trị nhỏ nhất của f(t)  là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy  P min = − 3

23 tháng 9 2019

\(P=\frac{\left(x-y\right)^2+2xy}{x-y+1}=\frac{t^2+8}{t+1}\)  (với t = x - y > 0)

\(=\frac{t^2-4t+4}{t+1}+\frac{4\left(t+1\right)}{t+1}=\frac{\left(t-2\right)^2}{t+1}+4\ge4\)

Đẳng thức xảy ra khi t = 2 -> x = y + 2 thay vào giả thiết xy = 4 tính tiếp v.v....

True?