K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

bài của bạn gần giống bài của mình

13 tháng 11 2018

ghen j đồng bào

27 tháng 10 2018

A B C D E F

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.tam giác FCM đồng dạng với tam giác FDC => CM/CD=CF/DF
=> CD=CM.DF/CF hay a=CM.CE/CF ( vì DF =CE bởi tam giác BCE = tam giác CDF)
c.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
d.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2

28 tháng 11 2023

a)ta có:

AB=DC mà AE=1/2 AB, KC= 1/2 DC

=>AE=KC

Xét tứ giác AECK, ta có: 

AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)

=>tứ giác AECK là hình bình hành.

b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp

29 tháng 11 2023

DF VUÔNG GÓC CE, DF vuông góc AK

15 tháng 10 2016

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

15 tháng 10 2016

chiu

tk nhe

xin do

bye

17 tháng 10 2022

a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có

CD=BC

CF=BE

Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE

=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ

=>CE vuông góc với DF

b: Gọi Klà trung điểm của CD và N là giao của AK và DF

Xét tứ giác AECK có

AE//CK

AE=CK

Do dó: AECK là hình bình hành

SUy ra: AK=CE và AK//CE

=>AK vuông góc với DF

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

Xét ΔAMD có

AN vừa là đường cao, vừa là đường trung tuyến

nên ΔAMD cân tại A

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2