K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

9 tháng 8 2020

học tốtimage

10 tháng 3 2017

hình

9 tháng 5 2015

A B C H D E

Tam giác ABC vuông tại A => góc ACD + DBA = 90o

Tam giác ABH vuông tại H => góc BAH + DBA = 90o

=> góc ACD = BAH

Xét tam giác ADC có: góc ADB = DAC + ACD (tính chất góc ngoài của tam giác)

=> góc ADB = DAC + BAH

mặt khác, Góc BAD = DAH + BAH 

Vì tam giác ABD cân tại B (AB = AD) => góc ADB = BAD 

=> DAC = DAH => AD là phân giác của góc HAC 

6 tháng 5 2018

Mình đồng ý với ý kiến của cô Loan