tìm số tự nhiên n biết : 2/3+2/15+2/35+2/63+...+2/n = 100/101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2)1+1+2+2^2+\cdot\cdot\cdot+2^n=2^{101}\)
\(\Rightarrow1+2+2^2+\cdot\cdot\cdot+2^n=2^{101}-1\)
\(\Rightarrow2+2^2+2^3+\cdot\cdot\cdot+2^{n+1}=2^{102}-2\)
\(\Rightarrow\left(2+2^2+\cdot\cdot\cdot+2^{n+1}\right)-\left(1+2+\cdot\cdot\cdot+2^n\right)=\left(2^{102}-2\right)-\left(2^{101}-1\right)\)
\(\Rightarrow2^{n+1}-1=2^{101}-1\)
\(\Rightarrow2^{n+1}=2^{101}\)
\(\Rightarrow n+1=101\)
\(\Rightarrow n=100\)
\(1)a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)=10075(a⋮̸2)\)
\(\Rightarrow5a+\left(2+4+6+8\right)=10075\)
\(\Rightarrow5a=10075-20\)
\(\Rightarrow5a=10055\)
\(\Rightarrow a=2011\)
a) \(A=1+2+2^2+2^3+...+2^{100}\) \(B=2^{201}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{201}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{201}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A-A=2^{101}-1\)
\(A=2^{201}-1\)
Ta có 2201 > 2201 - 1 => B > A => 2201 > 1 + 2 + 22 + 23 +...+ 1100
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1< 2^{101}\)
a) \(2^n=8\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)
b) \(5^{n+1}=125\)
\(\Rightarrow5^{n+1}=5^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=3-1=2\)
c) Mình không rõ đề:
d) \(2\cdot7^{n-1}+3=101\)
\(\Rightarrow2\cdot7^{n-1}=101-3\)
\(\Rightarrow2\cdot7^{n-1}=98\)
\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)
\(\Rightarrow7^{n-1}=49\)
\(\Rightarrow7^{n-1}=7^2\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=1+2=3\)
e) \(3\cdot5^{2n+1}-6^2=339\)
\(\Rightarrow3\cdot5^{2n+1}=339+36\)
\(\Rightarrow3\cdot5^{2n+1}=375\)
\(\Rightarrow5^{2n+1}=125\)
\(\Rightarrow5^{2n+1}=5^3\)
\(\Rightarrow2n+1=3\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=\dfrac{2}{2}=1\)
=> 2/1x3 +2/3x5+2/5x7+2/7x9+...+2/nx(n+2)
=>1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9+...+1/n-1/n+2
=>1-1/n+2=100/101
1/n+2=1-100/101
1/n+2=1/101
=>n+2=101
=>n=101-2
=>n=99